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SUMMARY

In the computational electromagnetism community it is known how the differential formulation of an
eddy-current problem, can be translated into a finite dimensional system of equations involving circulations
and fluxes, by means of the so-called Discrete Geometric Approach. This is done by exploiting the
geometric structure behind Maxwell’s equations. In this paper, we will show how the same Discrete
Geometric Approach can be profitably used also to discretize an eddy-current problem formulated in an
integral way.

We rely on a purely geometric definition of a novel set of face vector basis functions that we use to
construct the discrete counterparts—matrices—of both the Ohm’s constitutive relation and of the integral
relation between the magnetic vector potential and the eddy-current density vector. The symmetry and
positive-definiteness of such matrices will be demonstrated and their geometric structure will be apparent.
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1. INTRODUCTION

The discretization of a magnetoquasistatic problem formulated in terms of partial differential
equations is commonly and conveniently performed by means of Finite Element techniques. More
recently, the so-called Discrete Geometric Approaches put the emphasis on the geometric structure
behind Maxwell’s equations and they made visible how the basic laws of eddy-currents—and in
general of electromagnetism—can be stated directly in an algebraic form, in terms of circulations
and fluxes of the related field quantities, plus the discrete counterparts of the constitutive relations.
(For a background of the discrete geometric approach, see papers by Weiland, Tonti and Bossavit,
such as [1–10] and also papers such as [11–13].) With a particular choice of the base functions—
the Whitney vector base functions—this modern Discrete Geometric Approach allows to reobtain
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a finite dimensional system of equations of the same kind as that given by the classical Galerkin
approach in Finite Elements [14, 15].

On the other hand, a magnetoquasistatic problem can be also formulated in terms of integral
equations [16–18]. Integral equations allow, in general, to concentrate the mesh in the conducting
and magnetic regions only and regularity conditions of the field at the infinity are automatically
satisfied; as a drawback, they lead to a full system of equations, compared with the sparse system
yielded by the discretization of partial differential equations.

Without entering in the competition between the two ways of formulating an electromagnetic
eddy-current problem, the aim of this paper is to show how a discrete geometric formulation is
possible also for an integrally formulated magnetoquasistatic problem. We will concentrate mainly
on the geometric aspects at the base of the integral formulation and on the discretization process
which yields to a discrete differential system of equations from the original integral equation
governing an eddy-current problem in linear media. The resulting integral geometric formulation
can also treat non-topologically trivial domains by resorting to the techniques already described
originally in [16, 19] for multiply connected regions or more generally in [20–22] and we will not
give the details here.

We will start with the continuity law, Ampère’s law and Faraday’s law stated in discrete setting;
then the matrices representing the discrete counterparts of Ohm’s constitutive relation and of the
integral relation between the magnetic vector potential and current density vector will be computed
by introducing a novel fully geometric set of face vector functions defined not only for tetrahedra—
like Whitney face vector functions are—but also for (oblique) prisms with triangular base and
(oblique) parallelepipeds. We will show how the elements of these matrices are directly related to
the edge vectors associated with the edges of the mesh.

The paper is organized as follows. Section 2 describes the geometric integral formulation for
eddy-current and the final linear differential system of equations. In Section 3 the novel face vector
functions for tetrahedra, (oblique) triangular prisms and (oblique) parallelepipeds are described in
a geometric way. In Sections 4 and 5 the discrete counterpart of Ohm’s law and of the integral
relation between the magnetic vector potential and the current density vector are constructed,
respectively. The numerical solution of a 3D eddy-current problem compared with a reference
finite elements solution will conclude the paper.

2. THE GEOMETRIC INTEGRAL FORMULATION

We consider an eddy-current problem in a domain �, where a conducting region �c is present with
resistivity �(r), function of position vector r, together with a source region �s. The insulating region
is �a=�−�c∪�s. The magnetic medium in � is assumed linear with uniform permeability �.

The spatial region �c is covered by a pair of oriented grids G, G̃ [4, 14]. The grid G consists
of tetrahedra, (oblique) triangular prisms and (oblique) parallelepipeds; it has n nodes, l edges,
f faces and v volumes. Each of these geometrical elements is given an orientation. The other grid
G̃ is constructed according to the barycentric subdivision of G [23]; it has ñ=v nodes, l̃= f edges,
f̃ = l faces and ṽ=n volumes. The orientation of each geometrical element of G̃ is induced by the
orientation of the corresponding geometrical element of the grid G. This one-to-one correspondence
between the geometrical elements of G, G̃ is often referred to as duality.
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The electromagnetic field quantities of the eddy-current problem are discretized into integral
quantities associated with the geometrical elements of the pair of staggered grids G, G̃; the integral
quantities associated with the geometrical elements of G̃ will be marked with a tilde above. We
introduce the f ×1 array i(t) whose elements are the currents ii (t), with i=1 . . . f , sampled
through the f faces of G; such an array is dependent from the grain h of the grid G and it will
be involved in the construction of the finite-dimensional system of equations. Conceptually, the
array i(t) only approximates (in the limit for h→0, it converges to) the actual array � f j(r, t) of
dimension f ×1 of the fluxes of the current density j(r, t) in �c through the f faces of G, where
symbol � f acts on a vector field (j(r, t) in the specific case) yielding an array of fluxes (currents
in the specific case) through the faces of G.

The integral quantities associated with the geometrical elements of G, G̃ are related by balance
equations which translate in an algebraic form the physical laws ruling an eddy-current problem.
Therefore, we begin with continuity law which involves the array i(t); it is discretized into the
following matrix equation:

Di(t)=0, (1)

where matrix D denotes the v× f volume–face incidence matrix of the grid G.
The discrete counterpart of the boundary condition j(r, t) ·n=0 on ��c can be written as ii (t)=0

with i=1, . . . , fb, where fb is the number of faces of G on ��c and we can introduce a reduced
array ir(t) of dimension ( f − fb)×1 obtained from i(t) by eliminating the rows associated with
the faces of G on ��c.

To satisfy (1), we search for an l×1 array T(t), of elements Ti (t) with i=1 . . . l, which
approximates the l×1 array‡ �eT(r, t) of the circulations of the electric vector potential T(r, t)
along the edges of G such that Ampère’s law can be written as

i(t)=CT(t), (2)

where C is the f ×l face–edge incidence matrix for the grid G. The discrete counterpart of the
boundary condition ii (t)=0 with i=1, . . . , fb for the fb faces of G on ��c, translates into a number
of linear equations involving the Ti (t), with i=1, . . . , lb, associated with the lb edges forming ��c;
for a topologically trivial domain �c, we write lb equations Ti (t)=0, with i=1, . . . , lb. Otherwise
for a non-trivial domain, we resort to the classical technique based on the cuts computation, for the
details refer to [20–23]. According to this technique an additional unknown Tc is associated with
each cut c, with c=1, . . . ,C , C being the number of cuts; correspondingly an additional equation
is added per each cut c, often referred to as non-local equation [22]. As a consequence, all the
Ti values, with i=1, . . . , lb, associated with the lb edges on ��p, have a prescribed value§ and
they can be eliminated from the array T(t) yielding a reduced array Tr(t) of dimension (l−lb)×1.

Now we can rewrite (2) in terms of the reduced arrays

ir(t)=CrTr(t), (3)

‡Symbol �e acts on a vector field yielding an array of circulations along the edges of G.
§This value is null in a trivial domain. For a non-trivial domain this value is non-null only for the Ti associated with
the edges of the so-called ribbon corresponding to cut c; in this case Ti =±Tc holds, where Tc is the additional
unknown for the cut c and +1 holds when the orientations of the ribbon edge ei and of the reference edge ec
match.
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where Cr is the reduced incidence matrix of dimension ( f − fb)×(l−lb) obtained from C by
eliminating the fb rows and lb columns associated with the faces and edges of G on ��c,
respectively.

Thanks to the linearity and homogeneity of the magnetic medium, we can introduce a magnetic
vector potential A(r, t) due to j(r, t) in �c as

A(r, t)= �

4�

∫
�c

j(p, t)
|r−p| d�p (4)

and the vector potential As(r, t) due to the known source current density js(r, t) in �s as

As(r, t)= �

4�

∫
�s

js(p, t)
|r−p| d�p, (5)

where we denoted with d�p the volume differential around p. As it is well known, the total vector
potential A(r, t)+As(r, t) is a solution of the canonical magnetostatic problem in � with solenoidal
sources j(r, t) and js(r, t) in �c and �s, respectively.

We introduce now the f̃ ×1 array ũ(t), of elements �̃i (t) with i=1, . . . , f̃ , which approximates
the f̃ ×1 array¶ � f̃ b(r, t) of the fluxes of the magnetic induction b(r, t) through the faces of

G̃. As a consequence of the boundary condition j(r, t) ·n=0 on ��c in terms of Ti associated
with the edges li of G on ��c, with i=1, . . . , lb, we may consider the reduced array ũr(t) of
dimension (l−lb)×1 obtained from ũ(t) by eliminating the lb fluxes on the faces of G̃ in a
one-to-one correspondence with the lb edges of G on ��c. The l̃×1 array ṽ(t), of elements ṽi (t)
with i=1, . . . , l̃, which approximates the l̃×1 array‖ �ẽe(r, t) of the circulations of the electric
field e(r, t) along the edges of G̃ is also introduced together with the corresponding reduced array
ṽr(t) of dimension ( f − fb)×1 obtained from ṽ(t) by eliminating the fb voltages associated with
edges of G̃ in a one-to-one correspondence with the fb faces of G on ��c.

Now, Faraday’s law is written only for those faces of G in a one-to-one correspondence with
an edge of G internal to �c; we obtain the following matrix equation:

CT
r ṽr(t)=−dũr(t)

dt
. (6)

Next, we introduce the l̃×1 array ã(t), of elements ãi (t) with i=1, . . . , l̃, which approximates
the l̃×1 array �ẽA(r, t) of the circulations of the magnetic vector potential A(r, t) along the edges
of G̃; the array �ẽAs(r, t) of the circulations of the magnetic vector potential As(r, t) along the
edges of G̃ will be regarded as a known term.

By eliminating from the array ã(t) the fb circulations associated with edges of G̃ in a one-to-one
correspondence with the fb faces of G on ��c, we obtain the corresponding reduced array ãr(t)
of dimension ( f − fb)×1. We have that

ũr(t)=CT
r (ãr(t)+�ẽrAs(r, t)) (7)

¶Symbol � f̃ acts on a vector field yielding an array of fluxes through the faces of G̃.
‖Symbol �ẽ acts on a vector field yielding an array of circulations along the edges of G̃.
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is the discrete counterpart of the representation of the magnetic induction in terms of the vector
potential b(r, t)= rot(A(r, t)+As(r, t)) inside �c, where �ẽrAs(r, t) is the reduced array corre-
sponding to �ẽAs(r, t).

Ohm’s constitutive relation e(r, t)=g(r)j(r, t) is discretized into the following matrix equation:

ṽ(t)=Ei(t), (8)

in which the f × f matrix E is a discrete counterpart of the resistivity tensor g(r); correspondingly,
in terms of reduced arrays we write

ṽr(t)=Erir(t), (9)

where Er is the reduced matrix of dimension ( f − fb)×( f − fb) obtained from E by eliminating
the fb rows and columns associated with the faces of G on ��c.

Similarly (4) can be discretized into the following matrix equation:

ã(t)=Mi(t), (10)

where M is a matrix of dimension f × f ; in terms of the corresponding reduced arrays it becomes

ãr(t)=Mrir(t), (11)

where Mr is the reduced matrix of dimension ( f − fb)×( f − fb) obtained from M by eliminating
the fb rows and columns associated with the faces of G on ��c.

The problem of discretizing such constitutive relations is crucial and will be faced in a fully
geometric way in the following sections.

It is here noted that (3), (6) and (7), descend from similar equations, exactly satisfied by � f j(r, t),
�eT(r, t), �ẽe(r, t), � f̃ b(r, t) and by �ẽ(A(r, t)+As(r, t)), respectively,

� f j(r, t) =C�eT(r, t), (12)

C̃�ẽe(r, t) = − d

dt
� f̃ b(r, t), (13)

� f̃ b(r, t) = C̃�ẽ(A(r, t)+As(r, t)). (14)

On the contrary, the equations obtained from (8), (10) by substituting � f j(r, t) for i(t), and,
respectively, �ẽe(r, t) for ṽ(t) and �ẽA(r, t) for ã(t) are only approximate [14]. This is the well-
known constitutive error affecting the overall discrete formulated electromagnetic problem.

By substituting in (6), (9) for ṽr(t), (7) for ũ(t), (11) and (3) for i(t), we obtain the final linear
differential system

CT
r MrCr

d

dt
Tr(t)+CT

r NrCrTr(t)=−CT
r
d

dt
�ẽrAs(r, t). (15)

For a non-trivial domain, additional equations must be added (one for each computed cut) involving
an additional unknown for each cut; to close the integral eddy-current formulation, initial conditions
are also imposed.
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3. GEOMETRIC FACE VECTOR FUNCTIONS

We introduce the restrictions Gk , G̃
k
of the pair of grids G, G̃ to the subdomain �k of G, Figure 1.

Let �k
i , �̃

k
i with i=1, . . . , lk be the lk edges ofGk and the faces of G̃

k
, with k=1, . . . ,v, respectively.

Similarly let �k
i , �̃

k
i with i=1, . . . , f k be the f k faces of Gk and the edges of G̃

k
, with k=1, . . . ,v,

respectively. Let lki , s̃
k
i with i=1, . . . , lk be, respectively, the edge vectors of the edges �k

i of Gk

and the face vectors of the faces �̃
k
i of G̃

k
. Let ski , l̃

k
i with i=1, . . . , f k be, respectively, the face

vectors of the faces �k
i of Gk and the edge vectors of the edges �̃

k
i of G̃

k
. Let rk be the node of

G̃
k
which coincides with the barycenter of Gk , with k=1, . . . ,v.

Let �̃
k
i be the volumes of G̃

k
, with i=1, . . . ,nk , nk being the number of nodes of Gk . For

each volume �̃
k
i , a triple of edges is introduced given by the edges of Gk intersecting �̃

k
i . Such

edges are named �̂
k
�, with �=1, . . . ,3nk , and are independently oriented with respect to the edges

of Gk . Similarly for each volume �̃
k
i a triple of faces is introduced given by the faces of Gk

intersecting �̃
k
i .

It is assumed that edge �̂
k
� and face �̂

k
� with the same index � correspond to a same volume �̃

k
i ,

and are not coplanar. Besides it is assumed that �̂
k
�, �̂

k
� are oriented in such a way that l̂k� · ŝk�>0,

in which l̂k� is the edge vector of �̂
k
� and ŝk� is the face vector of �̂

k
�.

In this way a triplet of edges �̂
k
� and a triplet of faces �̂

k
� univocally correspond to �̃

k
i . This

correspondence will be described with a function i=n(�) which associates with each pair of an

edge �̂
k
� and a face �̂

k
� the corresponding volume �̃

k
i .

Figure 1. The three typologies of �k volumes are shown: (oblique) parallelepiped (a), (oblique) triangular

prism (b) and tetrahedron (c). The pair of not coplanar edge �̂
k
� and face �̂

k
� corresponding to the same

dual volume �̃
k
i , with i=n(�) are also evidenced.

Copyright q 2010 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2010; 82:1720–1736
DOI: 10.1002/nme
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Let K̂ k be 1
8 ,

1
12 ,

1
24 according to the volume �k is an (oblique) parallelepiped, an (oblique)

triangular prism or a tetrahedron, respectively. Besides let Ĉk
� be 1 or 2 according to the face �̂

k
�

is a parallelogram or a triangle. Let P̂k be the 3nk× f k rectangular matrix whose elements are

p̂k�i =
ŝk�
|ŝk�|

· ski
|ski |

� f (�)i , (16)

f (�) being the index of the face �k
f (�) of G

k corresponding to face �̂
k
� and i=1, . . . , f k .

Lemma 1
The following geometric relations:

|�̃k
n(�)|= K̂ kĈk

� l̂
k
� · ŝk�, (17)

3nk∑
1

� p̂
k
�i K̂

kĈk
� l̂

k
� = l̃

k
i (18)

hold.

Proof
The thesis stems from the following purely geometric identities. For an (oblique) parallelepiped
we have that

(K̂ kĈk
�)(l̂k� · ŝk�) = 1

88|�̃
k
n(�)|,

3nk∑
1

�(K̂
kĈk

�)( p̂k�i l̂
k
�) = 1

8

3nk∑
1

� p̂
k
�i l̂

k
� = 1

8
8l̃

k
i

hold. For an (oblique) triangular prism (when �̂
k
� is a parallelogram), we have that

(K̂ kĈk
�)(l̂k� · ŝk�) = 1

66|�̃
k
n(�)|,

3nk∑
1

�(K̂
kĈk

�)( p̂k�i l̂
k
�) = 1

6

3nk∑
1

� p̂
k
�i l̂

k
� = 1

6
6l̃

k
i .

hold. For an (oblique) triangular prism (when �̂
k
� is a triangle) and for a tetrahedron we have that

(K̂ kĈk
�)(l̂k� · ŝk�) = 1

1212|�̃
k
n(�)|

3nk∑
1

�(K̂
kĈk

�)( p̂k�i l̂
k
�) = 1

12

3nk∑
1

� p̂
k
�i l̂

k
� = 1

12
12l̃

k
i .

hold. �
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The following step-wise uniform vector functions attached to the face �̂� are now introduced:

ŵ
k
�(r)=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

K̂ kĈk
� l̂

k
�

|�̃k
n(�)|

, r∈ �̃
k
n(�),

0, r /∈ �̃
k
n(�).

(19)

Lemma 2
The ŵ

k
�(r) vector functions satisfy the following properties:

∫
�̂
k
�∩�̃

k
n(�)

ŵ
k
	(r) ·n(r)d� = |�̂k

�∩�̃
k
n(�)|

|�̂k
�|

��	, �,	=1, . . . ,3nk, (20)

3nk∑
1

�ŵ
k
�(r)⊗ ŝk� = I, (21)

K̂ kĈk
� l̂

k
� =

∫
�k

ŵ
k
�(r)d�, �=1, . . . ,3nk . (22)

Proof

If n(�) 	=n(	), since �̃
k
n(�) and �̃

k
n(	) are disjoint, the left-hand side of (20) is zero. Otherwise if

n(�)=n(	) then

∫
�̂
k
�∩�̃

k
n(�)

ŵ
k
	(r) ·n(r)d�= |�̂k

�∩�̃
k
n(�)|

|�̂k
�|

ŝk� ·
K̂ kĈk

	 l̂
k
	

|�̃k
n(	)|

which is zero if � 	=	, since l̂
k
� · ŝk	 =0, and is |�̂k

�∩�̃
k
n(�)|/|�̂

k
�|, as a consequence of Lemma 1, if

�=	. Thus (20) is proved.

Let r∈ �̃
k
i . The sum in the left-hand side of (21) has only three non-zero terms for the values

�1, �2, �3 of the index � such that n(�1)=n(�2)=n(�3)= i . Thus, from the definition of ŵ
k
�(r),

from Lemma 1, and since ŝk�1 , ŝ
k
�2 , ŝ

k
�3 are parallel to l̂

k
�2 × l̂

k
�3 , l̂

k
�3 × l̂

k
�1 , l̂

k
�1 × l̂

k
�2 , respectively, it

follows:

3nk∑
1

�ŵ
k
�(r)⊗ ŝk� = l̂

k
�1 ⊗ ŝk�1

ŝk�1 · l̂
k
�1

+ l̂
k
�2 ⊗ ŝk�2

ŝk�1 · l̂
k
�2

+ l̂
k
�3 ⊗ ŝk�3

ŝk�3 · l̂
k
�3

= (l̂k�2 × l̂k�3)⊗ l̂k�1
(l̂k�2 × l̂k�3) · l̂k�1

+ (l̂k�3 × l̂k�1)⊗ l̂k�2
(l̂k�3 × l̂k�1) · l̂k�2

+ (l̂k�1 × l̂k�2)⊗ l̂k�3
(l̂k�1 × l̂k�2) · l̂k�3

=I

in which the last equality for l̂k�1 , l̂
k
�2 , l̂

k
�3 can be directly verified, and (21) is proved.
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Lastly, by recalling the definition of ŵ
k
�(r), (22) straightforwardly descends. �

3.1. The face vector functions and their properties

The following result can now be proved.

Theorem 1
The vector functions attached to the face �k

i

wk
i (r)=

3nk∑
1

�ŵ
k
�(r) p̂

k
�i , i=1, . . . , f k

satisfy the following geometric properties:

∫
�k

j

wk
i (r) ·n(r)d� = �i j , i, j =1, . . . , f k, (23)

f k∑
1

iwk
i (r)⊗ski = I, (24)

∫
�
wk
i (r)d� = l̃ki , i=1, . . . , f k . (25)

Proof
From the definition of wk

i (r) it follows:

∫
�k

j

wk
i (r) ·n(r)d� =

3nk∑
1

� p̂
k
�i

∫
�k

j

ŵ
k
�(r) ·n(r)d�

=
3nk∑
1

� p̂
k
�i

3nk∑
1

	

∫
�̂
k
	∩�̃

k
n(	)

ŵ
k
�(r) ·n(r)d�

=
3nk∑
1

� p̂
k
�i

3nk∑
1

	 p̂
k
	 j

∫
�̂
k
	∩�̃

k
n(	)

ŵ
k
�(r) ·n(r)d�

=
3nk∑
1

�	 p̂
k
�i p̂

k
	 j

|�̂k
�∩�̃

k
n(�)|

|�̂k
�|

��	,

=
3nk∑
1

�
|�̂k

�∩�̃
k
n(�)|

|�̂k
�|

p̂k�i p̂
k
� j =�ij, (26)

Equation (26) is descending from (20). Equation (23) is thus proved.
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From the definition of wk
i (r) and from (21) it follows:

f k∑
1

iwk
i (r)⊗ski =

f k∑
1

i

3nk∑
1

�ŵ
k
�(r)t̂

k
�i ⊗ski

=
3nk∑
1

�ŵ
k
�(r)⊗

f k∑
1

i p̂
k
�i s

k
i

=
3nk∑
1

�ŵ
k
�(r)⊗ ŝk� =I.

Equation (24) is thus proved.
Lastly from the definition of wk

i (r), from (22) and from (18) it follows:∫
�
wk
i (r)d� =

∫
�

3nk∑
1

�ŵ
k
�(r) p̂

k
�i d�

=
3nk∑
1

� p̂
k
�i

∫
�

ŵ
k
�(r)d�

=
3nk∑
1

� p̂
k
�i K̂

kĈk
� l̂

k
� = l̃ki , i=1, . . . , f k .

Equation (25) is thus proved. �

We will now introduce the current density field computed in �k from the currents i ki (t) across
the faces Gk . We denote with pkf (r)i

k(t) such current density field, where symbol pkf (r) acts on

the fluxes across the faces (currents in the specific case) of Gk yielding a vector field (a computed
current density vector in the specific case). Of course the current density vector pkf (r)i

k(t) only
approximates the actual current density vector j(r, t). We demonstrate the following theorem.

Theorem 2
The functions wk

i (r) with i=1, . . . , f k form a basis and for the current density field

pkf (r)i
k(t)=

f k∑
1

i i
k
i (t)w

k
i (r),

the degrees of freedom i ki (t) with i=1, . . . , f k are the fluxes of pkf (r)i
k(t) through the faces of Gk .

Proof
By computing the fluxes of pkf (r)i

k(t) through the faces �k
j , with j =1, . . . , f k , and by using (23)

it results in ∫
�k

j

pkf (r)i
k(t) ·n(r)d� =

f k∑
1

i i
k
i (t)

∫
�k

j

wk
i (r) ·n(r)d�

=
f k∑
1

i i
k
i (t)�ij= i kj (t), j=1, . . . , f k . (27)
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Thus, the degrees of freedom i kj (t) are the fluxes of pkf (r)i
k(t) through �k

j , with i= j, . . . , f k .

Besides if pkf (r)i
k(t)=0 then from (27) it follows i kj (t)=0, with j =1, . . . , f k . Thus, vector

functions wk
i (r), with i=1, . . . , f k , form a basis. �

Theorem 3
Field pkf (r)i

k(t) encompasses all fields spatially uniform in �k .

Proof
By applying both members of (24) to a uniform vector a, it results in

a=
(

f k∑
1

iwk
i (r)⊗ski

)
a=

f k∑
1

i (a·ski )wk
i (r)=

f k∑
1

i A
k
i w

k
i (r),

in which

Ak
i =

∫
�k
i

a ·n(r)d�, i=1, . . . , f k .

and the thesis follows. �

As a consequence, the wk
i (r) vector functions can be used as a basis for representing vector fields

within �k which can be locally approximated as uniform. Such functions are different from the face
element vector functions used in the Finite Element Method (FEM). The vector field pkf (r)i

k(t)

will be used as an approximation of the current density field j(r, t) within �k .

4. THE CONSTITUTIVE MATRIX E

Let gk(r) be the restriction of the g(r) resistivity tensor to the region �k . Let ik(t) be the f k×1
array of the approximations of the fluxes i ki (t), with i=1, . . . , f k , of the current density j(r, t)
through the faces of Gk . Let ṽk(t) be the f k×1 array of the approximations of the circulations

ṽki (t) of the electric field e(r, t) along the along the edges of G̃
k
.

If e(r, t) is uniform in �k then from (25) it is, for i=1 . . . , l̃k ,∫
�̃
k
i

e(r, t)d�r=
∫

�k
e(r, t) ·wk

i (r)d�r

Thus if e(r, t) can be approximated as locally uniform, then the following relations can be assumed
for approximating ṽki (t), with i=1 . . . , l̃k ,

ṽki (t)=
∫

�k
e(r, t) ·wk

i (r)d�r (28)

Besides if j(r, t) can be approximated as locally uniform then it can be represented in each �k by
pkf (r)i

k(t) and if the resistivity tensor gk(r) can be approximated as locally homogeneous it can be
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approximated by its value gk(rk) evaluated at the node rk . Thus, from Ohm’s constitutive relation
and Theorem 2 it results in

e(r, t)=gk(rk)
f k∑
1
i kj (t)w

k
j (r). (29)

By substituting (29) into (28) we obtain for ṽki (t), with i=1 . . . , l̃k , the following equation:

ṽki (t)=
f k∑
1

j

(∫
�k

wk
i (r) ·gk(rk)wk

j (r)d�r

)
i kj . (30)

Equivalently

vk(t)=Ek ik(t) (31)

in which Ek is an f k× f k matrix whose elements are

Ek
ij=

∫
�k

wk
i (r) ·gk(rk)wk

j (r)d�, i, j =1, . . . , f k, (32)

By construction, if g(r), e(r, t), j(r, t) are spatially uniform, then (31), (32) are exact equations.
Thus if g(r), e(r, t), j(r, t) can be approximated as locally homogeneous, then (31), (32) can be
assumed as an approximate equation relating ik(t), ṽk(t) with k=1, . . . ,v.

Besides the following property for Ek descends.

Lemma 3
Matrix Ek is symmetric, positive-definite.

Proof
Since the resistivity tensor gk(rk) is symmetric, it follows:

Ek
ij=

∫
�k

wk
i (r) ·gk(rk)wk

j (r)d�=
∫

�k
wk

j (r) ·gk(rk)wk
i (r)d�=Ek

ji i, j =1, . . . , f k

and Ek is symmetric. Since the resistivity tensor gk(rk) is positive-definite, it follows:

ik(t)TEk ik(t) =
k∑
1

i j i
k
i (t)

(∫
�k

wk
i (r) ·gk(rk)wk

j (r)d�
)
i kj (t)

=
∫

�k

(
f k∑
1

i i
k
i (t)w

k
i (r)

)
·gk(rk)

(
f k∑
1

j i
k
j (t)w

k
j (r)

)
d�

=
∫

�k
pkf (r)i

k(t) ·gk(rk)pkf (r)ĩk(t)d��0

and Ek is positive semi-definite. Besides ik(t)TEk ik(t)=0 implies �kf (r)i
k(t)=0 and, from

Lemma 2, also ik(t)=0. Thus, Ek is positive-definite. �
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4.1. From local Ek to resistance matrix E

The resistance E matrix is now generated as follows. Let Pk be the f k× f matrix whose element
pki j is 1 if the i th face of Gk is the j th face of G and is 0 otherwise. Then it is

ik(t)=Pk i(t). (33)

Let it be

E= k

v∑
1
PkTEkPk

Since

v(t)=
v∑
1

kPkTvk(t)=
v∑
1

kPkTEk ik(t)=
v∑
1

kPkTEk(Pk i(t))=Ei(t)

then, from Lemma 3, E is symmetric, positive-definite, and it is a discrete counterpart of the g(r)
tensor.

5. EXPRESSION OF ã(t) IN TERMS OF i(t)

If A(r, t) is uniform in �k then from (25) it is, for i=1 . . . , l̃k ,∫
�̃
k
i

A(r, t)d�r=
∫

�k
A(r, t) ·wk

i (r)d�r

Thus if A(r, t) can be approximated as locally uniform, the following relations can be assumed
for approximating ãki (t), with i=1 . . . , l̃k :

ãki (t)=
∫

�k
A(r, t) ·wk

i (r)d�r (34)

Besides, if j(r, t) can be approximated as locally uniform then it can be represented in each �k by
pkf (r)i

k(t). Thus from (4) it results in

A(r, t)= �

4�

v∑
1

k

f k∑
1

j i
k
j (t)

∫
�k

wk
j (p)

|r−p| d�p (35)

By substituting (35) into (34) we obtain for ãki (t), with i=1 . . . , l̃k ,

ãhi (t)= �

4�

v∑
1

k

f k∑
1

j ĩ
k
j (t)

∫
�h

∫
�k

wh
i (r) ·wk

j (p)

|r−p| d�r d�p, (36)

which can be equivalently rewritten as

ãh(t)=
v∑
1

kMhk ik(t), (37)
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where the elements of the f h× f k matrix Mhk are

Mhk
ij = �

4�

∫
�h

∫
�k

wh
i (r) ·wk

j (p)

|r−p| d�r d�p (38)

with i=1, . . . , f h , j =1, . . . , f k .
By construction, if A(r, t) and j(r, t) are spatially uniform, then (37), (38) are exact equations.

Thus if A(r, t), j(r, t) can be approximated as locally uniform, then (37), (38) can be assumed as
approximate equation relating ik(t), ãk(t) with k=1, . . . ,v.

The following property for Mhk descends.

Lemma 4
It results in

MhkT=Mkh .

Proof
It results in

Mhk
i j = �

4�

∫
�h

∫
�k

wh
i (r) ·wk

j (p)

|r−p| d�r d�p= �

4�

∫
�h

∫
�k

wk
j (r) ·wh

i (p)

|r−p| d�r d�p=Mkh
ji

and the claim follows. �

5.1. From local Mhk to global M

The global M matrix is now generated as follows. Let it be

M=
v∑
1

h

v∑
1

kPhTMhkPk .

Since

ã(t)=
v∑
1

hPhTãh(t)

holds. From (37), using (33), we obtain

ã(t)=
v∑
1

h

v∑
1

kPhTMhk(Pk i(t))=Mi(t).

Thus, M is a discrete counterpart of (4). Besides the following property descends for M, which
concurs in ensuring the stability of the discretized equations.

Theorem 4
Matrix M is symmetric, positive-definite.
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Proof
From Lemma 4 it results in

MT =
(

v∑
1

h

v∑
1

kPhTMhkPk
)T

=
v∑
1

h

v∑
1

kPkTMhkTPh =
v∑
1

h

v∑
1

kPkTMkhPh =M

and M is symmetric. Besides it is

iT(t)Mi(t) =
v∑
1

h

v∑
1

k ik(t)TMhk ik(t)

=
v∑
1

h

v∑
1

k

f h∑
1

i

f k∑
1

j i
h
i (t)i kj (t)

�

4�

∫
�h

∫
�k

wh
i (r) ·wk

j (p)

|r−p| d�r d�p

= �

4�

∫
�c

∫
�c

� f (r)i(t) ·� f (p)i(t)
|r−p| d�r d�p�0

in which

� f (r)i(t)=�kf (r)i
k(t) for r∈�k

and M is positive semi-definite; the last inequality descends from the known result [24] that
magnetic energy functional is non-negative. Besides i(t)TMi(t)=0 implies � f (r)i(t)=0 and, from
Lemma 2, also i(t)=0; thus M is positive-definite. �

6. NUMERICAL RESULTS

As a numerical example, we considered the computation of eddy currents in a conducting aluminium
plate (resistivity �=2.5×10−8�m) driven by a coil placed above it with a known impressed
current density such that the overall coil current is 400A; the conducting domain has a hole drilled
in it, Figure 2(a). We solved the eddy-current problem in the conducting domain �c with the
proposed geometric integral formulation as a time harmonic problem at a frequency f =5kHz;
the grid G in �c consists of 1708 nodes, 10 044 edges and 7501 tetrahedra, Figure 2(b); to solve the
final full complex system, we used the parallel library ScaLAPACK within the Intel Math Kernel
Library (MKL). Figure 3 shows the real and imaginary parts of the amplitude of eddy-current
density vector in the conductor, computed along a line l with the geometric integral formulation;
for comparison, a 2D reference finite element solution has been performed and the corresponding
reference real and imaginary parts of the current density along the same line l are drawn (solid
lines) in addition.

7. CONCLUSIONS

We showed how the integral formulation of an eddy-current problem can be discretized according
to the Discrete Geometric Approach. We rely on a purely geometric definition of a novel set of
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Figure 2. (a) Cross-section geometry of conducting and source regions; additionally line l is shown.
(b) The grid G in �c is shown and it consists of 1708 nodes, 10 044 edges and 7501 tetrahedra. The

eddy-current density vectors in �c are displayed also.

0 0.005 0.01 0.015
0

5

10

15
x 106

sampling point [m]

|J
r| 

[A
/m

2 ]

2D
integral

0 0.005 0.01 0.015
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 107

|J
i| 

[A
/m

2 ]

sampling point [m]

2D
integral

Figure 3. Real (left side) and imaginary (right side) parts of the amplitude of eddy-current density vector
compared with respect to corresponding reference 2D finite element solutions (solid lines).

face vector basis functions that we used to construct the discrete counterparts—matrices—of both
Ohm’s constitutive relation and of the integral relation between the magnetic vector potential and
the eddy-current density vector. The symmetry and positive-definiteness of such matrices have
been proved and their entries are computed directly in terms of edge vectors associated with the
edges of the mesh.
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