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Cyclic Symmetry in Volume Integral Formulations for Eddy
Currents: Cohomology Computation and Gauging
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This contribution addresses the solution of eddy-current problems by means of a volume integral formulation based on the
electric vector potential on a computational domain that exhibits a cyclic symmetry. Even if grids discretizing the domain are
typically composed of tetrahedral or hexahedral elements, the proposed approach also works for general polyhedral meshes, such
as those ones obtained by subgridding. In this article, an algorithm to compute a set of suitable cohomology generators needed
when the conductors are not simply connected is introduced first. Besides being purely combinatorial, with linear-time worst case
complexity and suitable with polyhedral meshes, it reuses a code that computes generators for triangular surface meshes, with
obvious advantages concerning the implementation effort. Second, the formulation and the algorithm for cohomology computation
are tweaked to be able to solve eddy-current problems with cyclic symmetry reserving specific attention to the construction of
suitable tree–cotree decomposition for the problem gauging.

Index Terms— Cohomology, cyclic symmetry, eddy currents, gauging, partial element equivalent circuit (PEEC), subgridding,
volume integral formulation.

I. INTRODUCTION

INTEGRAL and partial element equivalent circuit (PEEC)
formulations have the advantage of limiting the discretized

domain of a given eddy-current problem with non-magnetic
materials to the conducting parts only. A popular integral
formulation to solve eddy-current problems by using the
electric vector potential on tetrahedral or hexahedral meshes
has been introduced in [1]. In [2], a similar formulation has
been proposed that, however, uses cohomology theory [3] to
rigorously treat non-simply connected conductors and it is
suitable for general polyhedral meshes. Polyhedral meshes
have the potential of seamlessly dealing with hybrid meshes
made of tetrahedra, hexahedra, and all other possible shapes.
Polyhedral elements also enable the subgridding for adaptive
mesh refinement without recurring to hanging nodes or refine-
ment of adjacent elements.

In this article, we solve eddy-current problems with the
formulation of [2] on polyhedral meshes built, for example,
with subgridding. We first propose a novel algorithm to
compute the cohomology generators [3] required when the
conductors are not simply connected. The main advantage
of this new algorithm, besides being very fast, is that it
reuses the code for triangular meshes previously developed,
thus minimizing the new implementation effort required when
dealing with hexahedral or general polyhedral meshes.

The second contribution of this article, as a natural contin-
uation of [4], is a technique to exploit cyclic symmetry [5]
applied to the volume integral formulation [2] in the presence
of a polyhedral grid and non-simply connected conductors.
Moreover, by extending the idea of [4] to a volume integral
formulation, the new non-trivial issue of a proper tree–cotree
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decomposition for the problem gauging [1] arises. For this
reason, in this article, it is shown how to build a cyclic sym-
metric and consistent tree on the symmetry cell only, without
spoiling the problem symmetry. In conclusion, this approach
can be used in addition to the well-known matrix compression
techniques, as the adaptive cross approximation [6] to reduce
storage requirement for the system matrix, which is, in case
of integral formulations, a fully populated matrix.

The rest of this article is organized as follows. In Section II,
the volume integral formulation [2] is recalled. Section III
presents the novel algorithm for cohomology computation
when the mesh is composed of general polyhedral elements.
Section IV describes how to exploit the cyclic symmetry
and how to gauge the problem appropriately with suitable
tree–cotree decomposition. Finally, in Section V, the numerical
results are presented.

II. VOLUME INTEGRAL FORMULATION

The polyhedral mesh K covering the conductive regions �c

is composed by Nv polyhedral volume elements, N f polygonal
faces, Ne edges, and Nn nodes. The incidences of these
oriented geometrical elements are stored in the usual element-
face D and face-edge C incidence matrices. The vector of
currents flowing through the mesh faces is

I = CT + Wi (1)

where the degrees of freedom (DoFs) array T stores the
integral of the electric vector potential on mesh edges, and
i the array of independent currents [2] and the columns of W
store the representatives of generators of the second relative
cohomology group H 2(K, ∂K) [3], see Fig. 1(a). The second
relative cohomology group allows, by its very definition,
to span solenoidal fields tangent to ∂K that are not curl of
something. Thus, the term Wi of (2), relative to cohomology,
together with CT, allows to represent all possible solenoidal
currents I. As an example, the W for a solid torus is formed by
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Fig. 1. Example of cohomology generators for a solid torus K. (a) Support [7]
of a representative t1 of the H 2(K, ∂K) generator. It can be thought as a
thinned unit current that flows around the torus. In this example, t1 is obtained
as t1 = Cc1, where c1 is represented in (b). (b) Support of two representatives
of H1(∂K) generators. The thick red edge belongs to both supports of c1

and c2. They correspond to the poloidal and toroidal currents that flow on
∂K. (c) di , with i ∈ {1, 2}, is the cycle made of dual edges which are dual
to ci in ∂K. d1 is homologically trivial in R

3\K, whereas d2 is trivial in K.
(d) t2 = Cc2 is trivial in H 2(K, ∂K).

a single column whose entries, interpreted as electric current
DoFs, form a unit thinned current that flows around the torus,
see Fig. 1(a). The independent currents i are not known, and
thus, they form additional unknowns of the problem.

The formulation requires the automatic computation of W
through a fast and general algorithm. For efficiency, it is
preferable to construct W by working on ∂K only, simply
because there are fewer geometric elements to process in ∂K
than in the whole K. Moreover, the algorithms are intrinsically
simpler when working on manifold combinatorial surfaces,
such as ∂K. This is the reason why matrix H, whose columns
store some of the representatives of generators of the first
cohomology group H 1(∂K) [3], is usually employed. Yet,
the major difficulty here is that the H 1(∂K) cohomology group
produces twice the number of generators of an H 2(K, ∂K)
basis. For example, when dealing with a solid torus, as shown
in Fig. 1(b), the two boundary generators correspond to the
poloidal and toroidal currents that flow in ∂K. It is always
possible to find a basis of H 1(∂K) generators such that half
of the generators have the dual cycle (i.e., a cycle formed by
dual edges [3] in ∂K) in ∂K that is homologically trivial in
the insulator R

3\K [i.e., the cycle is the boundary of a two-
chain on the dual complex [3] whose support lies inside R

3\K,
such as the dual cycle d1 in Fig. 1(c)] and the ones whose dual
cycle in ∂K are homologically trivial in the conductor mesh
K [such as the dual cycle d2 in Fig. 1(c)]. Only the formers
produce an H 2(K, ∂K) basis when pre-multiplied by C, see
Fig. 1(a) and [7]. The others, such as the one in Fig. 1(d), must
be discarded to obtain a full-rank system. A technique to find
the required change of cohomology basis to obtain the matrix
H has been described in [7]. Consequently, W is computed as
W = CH and the current is thus represented with

I = C (T + Hi) . (2)

Fig. 2. Zoom on a part of the polygonal mesh of ∂K, where the cohomology
computation has to be performed. The four steps of the novel algorithm for
cohomology computation for polyhedral meshes are shown.

Let us define the matrix

K = CT (R + iωM) C (3)

and bs = −iωCT Ãs , where R and M are, respectively, the
resistance and inductance constitutive matrices whose com-
putation is detailed in [2], whereas Ãs is the integral of the
magnetic vector potential along the dual-grid edges due to
a source of the magnetic field. Let us also define Ũ as the
array of electromotive forces along dual edges and �̃ the
magnetic flux through dual faces. The magnetic flux is written
as �̃ = CT (Ã+Ãs), where Ã is the circulation of the unknown
magnetic vector potential on mesh edges.

By enforcing the discrete Faraday’s law locally as CT Ũ +
iω�̃ = 0 and globally as HT (CT Ũ + iω�̃) = 0, and by
considering the discrete constitutive relations Ũ = RI and
Ã = MI, the complete set of equations reads as[

K KH
HT K HT KH

] [
T
i

]
=

[
bs

HT bs

]
. (4)

Concerning boundary conditions, we set to zero the entries
of the array T relative to edges on ∂K. To reduce the
unknowns, we apply a tree–cotree gauge [1] by setting to zero
the entries of the array T on a suitable tree inside K.

III. NEW ALGORITHM FOR COHOMOLOGY COMPUTATION

There are various types of software that compute coho-
mology for triangulated surfaces, see, for example, [8]–[10]
or [11]. On the contrary, as far as we know, there are no off-
the-shelf implementations for more general meshes.

Motivated by minimizing the implementation effort, we pro-
pose here a way to reuse any implementation for computing
generators on triangulated surfaces. The idea is summarized
in the following four steps, see Fig. 2.

1) First, the boundary of the conductor mesh is considered,
see a part of such a combinatorial surface in Fig. 2(a).

2) Second, the boundary mesh is partitioned into triangles
obtaining a triangulated surface, see Fig. 2(b). Let P
be a polygon represented by an ordered list of vertices
v0, v1, v2, . . . , vn, see an example in Fig. 3(a). A chord
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Fig. 3. (a) Polygon P . (b) Partition of P into triangles without adding new
nodes.

in P is a line segment that connects two non-adjacent
vertices in P . A triangulation of P into n−2 triangles is
obtained by drawing n − 3 chords, see Fig. 3(b). Then,
the triangles are v0 − v1 − v2, v0 − v2 − v3, v0 − v3 −
v4, . . . , v0 − vn−1 − vn . We remark that since we need a
topological partitioning (i.e., the coordinates of vertices
are irrelevant), the same algorithm is used in the case of
concave polygons.

3) Third, any already available software is used to get coho-
mology generators for the obtained triangulated surface,
such as [8]–[10] or [11]. The support of a possible
representative of a cohomology generator H1(∂K) is
shown in Fig. 2(c).

4) Finally, the fourth step just loads the mesh edges with
non-zero coefficients in the representative of the coho-
mology generator of the triangulated surface. Each edge
is described as a pair of nodes that form its boundary.
If the edge, identified with the pair of nodes, is present
in the polygonal mesh, we assemble the coefficient to
the matrix H; otherwise, the coefficient is discarded.

It is clear that if step 3) of the previous algorithm is
performed in linear time, as suggested in [7], the worst case
complexity of the whole algorithm is linear with the number
of elements.

Let us show that each array c of coefficients obtained with
this algorithm is a representative of a cohomology generator
for the polyhedral mesh.

We have to show first that the one-cochain c is a one-
cocycle (i.e., a curl-free discrete field). Formally, c is such
that Cbc = 0, where Cb is the face-edge incidence matrix
restricted to ∂K. This is equivalent to show that, for each
polygon P of ∂K, the sum of the coefficients in ∂ P is zero.
This is indeed the case since P is a sum of triangles (thus,
a linear combination) and each triangle has zero circulation in
its boundary, since the coefficients computed by a software for
cohomology computation on the triangulation fulfill C�c� =
0, where C� and c� are the face-edge incidence matrix and the
one-cocycle relative to the triangulation, see Fig. 4(a) and (b).

Finally, the dual cycle in ∂K with respect to c is clearly
homologous to the dual cycle of c�, since they differ by a
boundary, see Fig. 4(c) and (d).

IV. EXPLOITING CYCLIC SYMMETRY

When the conductor has a cyclic symmetry [5], it is wise to
solve the problem on K by solving a family of problems on the
symmetry cell S, see Fig. 5(a) and (b). This is performed by
using the discrete Fourier transform [6]. Once that the matrix
becomes block circulant, the standard technique recalled in [6]

Fig. 4. Generic polygon P and its triangulation P�. (a) Thick edges (in
red) have a coefficient different than zero in a one-cochain c� obtained by
software for cohomology computation. They are one-cocycles, and therefore,
the circulation of the coefficients on the boundary of each triangle is zero.
(b) P is a sum of triangles, and therefore, the circulation of the coefficients in
the boundary of P is again zero. (c) Part inside P� of the dual cycle which is
dual to c�. (d) Part inside P of the dual cycle which is dual to c. Both parts
of the dual cycles start in point s and end in point t . They are homologous
in each polygon P since they differ by a boundary (the dark gray area).

Fig. 5. Support of a cohomology generator for (a) complete geometry K—a
disk with nine holes—and (b) supports of the two generators for the symmetry
cell S .

can be used to find the solution by solving one or more
problems in the symmetry cell S only.

The main point is that the matrix of the considered vol-
ume integral formulation is not block circulant in general,
and therefore the exploitation of cyclic symmetry is still an
open issue. Indeed, the part due to the non-local Faraday’s
laws originating from cohomology theory spoils the symme-
try of the problem. This has been recognized recently by
Rubinacci et al. [12], where they propose eliminating the non-
block-circulant blocks by using a costly algorithm.

One of the purposes of this article is to show that it is
possible to write the system directly in a block-circulant form
instead, thus avoiding the unnecessary complications of [12].
It is easy to realize that to obtain a block-circulant matrix,
the representatives of the cohomology generators have to share
the same cyclic symmetry as the geometry. Fig. 5(a) represents
the support of a representative of a cohomology generator
in K, which does not share the symmetry of the domain.
To build representatives with the appropriate geometric sym-
metry, we use an idea similar to what was proposed in [4] for a
boundary integral formulation. Let us define a novel complex
S � as the quotient space [3] of S formed by identifying the
first symmetry boundary S1 of S with the other symmetry
boundary S2, see Fig. 5(b). This means simply that we glue
S1 with S2, i.e., the labels of all geometric elements on S2 are
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Fig. 6. Top view of the 3-D S of Fig. 5(b). (a) Standard tree on S is not a
tree on the full domain K. (b) Proposed tree on S is symmetric and extends
as a tree on the full domain K.

changed with the ones of the corresponding elements on S1.
Then, one may use any algorithm for cohomology computation
on S �. The representatives of the cohomology generators on S
are obtained from the ones on S � by copying the coefficients
on edges of S1 to the edges on S2. Fig. 5(b) represents the
support of the generators on S obtained by using the proposed
technique. We remark that there is no assumption on the
topology of S1 and S2.

Another contribution of this article is to show that also the
spanning tree on K for the problem gauging should be care-
fully constructed to share the same symmetry of the problem,
again in order to get a block-circulant matrix. Gauging in the
considered context is useful to reduce the number of unknowns
and to get a full-rank linear system.

To get a spanning tree that shares the same symmetries of
the whole domain and for efficiency, it is desirable to build
the spanning tree on S only. The spanning tree on the whole
K is then obtained after all symmetry cells are glued together
to obtain K. For example, if one applies the classical recipe
of [1], one may produce a tree in the boundary ∂K ∩ S first,
see the violet dotted edges in Fig. 6(a). We recall that the tree
has to be built first on the boundary to be able to apply the
boundary conditions, see [1] for more details. Then, the tree is
made in the interior (in red), and finally, one needs to add one
edge to each connected component of ∂K∩S (the thick green
edge). As can be guessed from Fig. 6(a), this is a spanning
tree on S, but it is not suitable for our purposes since it
produces cycles when the symmetry cells are glued together to
obtain K.

The solution we propose to solve this problem is to find
the tree on S �. First, a tree is produced on ∂S �; see the violet
dotted edges in Fig. 6(b). Then, the tree is extended in the
interior of S �. Considering Fig. 6(b), the thick green edges
are the parts of the tree on S1 and S2, which are the same
since the edges on S1 and S2 are topologically identified as
the same edges. This identification allows, similarly to what is
performed for the generators, to produce a tree for S starting
from the tree on S �. It is clear that this tree cannot exhibit
a cycle when extended on K since such a tree would form a
cycle also on S �.

V. NUMERICAL RESULTS

In Fig. 7, we show the real current density Re{J} flowing
in the structure when a symmetric source of magnetic field

Fig. 7. (a) Real part of the current density Re{J} on the conductor K and
(b) Re{J} in the symmetry cell S .

is positioned above the conducting domain �c. The coil is
powered with a current Ic = 100 At at a frequency f =
200 Hz. The current computed using the complete structure K
is the same as the one computed using the symmetric cell S
up to the linear solver tolerance.
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