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Diagonal Material Matrices for Arbitrary Simplicial Meshes for
Solving Poisson Problems With One Unknown Per Element

Fabrizio Bellina and Ruben Specogna

EMCLab, Polytechnic Department of Engineering and Architecture (DPIA), Università di Udine, 33100 Udine, Italy

We present a technique to construct diagonal material matrices for arbitrary triangular and tetrahedral meshes and arbitrary
scalar material parameters. The recipe is based on a novel dual complex called folded Voronoï diagram. The proposed matrices are
tailored to enable the use of a complementary-dual formulation for Poisson problems featuring one unknown per element.

Index Terms— Cell method (CM), consistency, diagonal discrete Hodge operators, diagonal mass matrices, diagonal material
matrices, finite-integration technique (FIT), folded Voronoi diagram.

I. INTRODUCTION

CONSIDERING stationary current conduction as the par-
adigm Poisson problem in a connected region � of the

3-D Euclidean space, we want to solve
⎧⎨⎨
⎨⎩

curl E = 0
div J = 0

J = σE

(1)

where σ is the electric conductivity; and E and J are the
electric field and the current density vectors, respectively. The
material parameter electric conductivity σ is assumed to be
a positive scalar value which is a piecewise uniform in each
material region. The region boundary ∂� is partitioned into
a set of N i surfaces of perfect insulators ∂�i

k , and a set of
Nc + 1 disjoint equipotential surfaces (electrodes) of perfect
conductors ∂�c

k

∂� =
N i�

k=1

∂�i
k +

Nc�
k=0

∂�c
k . (2)

Electrode ∂�c
0 is considered as reference for all voltages of

the remaining electrodes, which are supposed to be assigned.
J · n = 0 is set as boundary conditions (b.c.) on each ∂�i

k ,
where n is the outward-oriented normal unit vector of ∂�.

There are several formulations to numerically solve prob-
lems like (1). The scalar potential (SP) finite-element (FE)
formulation based on nodal elements is the most commonly
used. With this formulation, the unknowns are the SPs V
sampled on the mesh nodes. The voltages U = −GV are
associated with the mesh edges, where G is the edge-node
incidence matrix. Finally, the array Ĩ of the currents through
the mesh dual faces [1] can be defined.

However, there exist complementary formulations where
currents I are associated with mesh faces, whereas the voltages
Ũ are evaluated on dual edges [2], [3]. The most commonly
used complementary formulation is the one using a vector
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potential (VP) represented by the curl-conforming Nédélec
edge elements [4] or other geometric basis functions [3].

There is a third class of complementary formulations that
we call complementary-dual: they still use the SP Ṽ, which is
sampled on mesh dual nodes, one-to-one with mesh elements.
A sound complementary-dual method is the mixed-hybrid
(MH) FE formulation [5], which provides the same current
density of VP formulation [5].

There is another complementary-dual formulation, much
less explored in the literature, which features one unknown
per element [7], [8]. The key ingredient to enable the use of
this dual SP DSP formulation is the construction of a diagonal
mass matrix, which is believed to be impossible for general
simplicial meshes.

After an introduction to the DSP formulation in Section II,
Section III shows a technique to build a diagonal matrix and
its physical roots are apparent when exploiting an equivalence
with electrical networks. Section IV presents some numerical
results and then conclusions are drawn.

II. DSP FORMULATION

The DSP formulation with one unknown per element is
obtained by writing (1) in the geometric framework [1], [2],
that is

CT Ũ = 0 (3)

DI = 0 (4)

I = S̃Ũ (5)

where Ũ is the voltage on dual edges, I is the current on mesh
faces, D is the element-face incidence matrix, C is the face-
edge incidence matrix, and S̃ is the dual conductance matrix
that maps Ũ into I. To implicitly satisfy (3), the SP Ṽ in the
dual nodes is introduced through

Ũ = −G̃Ṽ + Ũs = −DT Ṽ + Ũs (6)

since G̃ = DT and CT DT = (DC)T = 0 holds [2]. Ũs is
introduced to take into account the Dirichlet b.c., so that
CT Ũs = 0 [5], [6]. By substituting (6) and (5) into (4), one
gets

(DS̃DT )Ṽ = DS̃Ũs (7)

having the SP on dual nodes as unknowns.
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Fig. 1. (a) Two triangles s and t that satisfy the Delaunay condition and
contain their circumcenters. (b) Two triangles s and t that satisfy the Delaunay
condition but the circumcenter ñt of t lies outside t . (c) Degenerate case when
four (or more) nodes lie on a circumference. This case is solved by perturbing
the nodes or by creating a polygonal element. (d) Dual mesh of two triangles
s and t that do not satisfy the Delaunay condition.

Matrix S̃ may be computed as S̃ = R−1, where the resis-
tance mass matrix R is the FE mass matrix obtained by using
the div-conforming Raviart–Thomas face basis functions. Yet,
the obtained matrix S̃ is fully populated, hence not usable
in practice. Another solution, reviewed in [6], is based on
a geometric construction of S̃ which, however, provides a
matrix with such poor sparsity that the resulting formulation
is again not competitive.

On the contrary, a diagonal conductance matrix S̃ can be
easily computed as described in Section III, which makes DSP
formulation numerically efficient.

III. CONSTRUCTION OF DIAGONAL MATERIAL MATRICES

A. Survey on Diagonal Material Matrices

In the methods based on primal-dual interlocked meshes
like the finite-integration technique (FIT) [9]; cell method
(CM) [2], [10]; generalized finite differences [11]; discrete
geometric approach (DGA) [3]; or discrete geometric meth-
ods (DGMs) [7], the commonly acknowledged condition to
achieve diagonal matrices is that each dual node has to be
placed in the circumcenter of the element to give rise to a
pair of orthogonal grids [9], [10] [see Fig. 1(a)]. If the mesh
is Delaunay (i.e., the circumcircle of every element contains
no node in its interior), the dual interlocked mesh is called
Voronoï diagram. The straight dual edges connect pairs of
dual nodes relative to triangles sharing an edge or tetrahedra
sharing a face. Since the Voronoï diagram is a partition of the
input geometry into convex polygons or polyhedra, dual edges
are always nonself-intersecting.

In literature, it is well known that it is hard to extend
the construction of diagonal material matrices to arbitrary

Fig. 2. (a) Geometric elements s and t involved in the conductance
computation. (b) Positive dual edge length: the current is concordant with the
potential difference. (c) Negative dual edge length: the current is discordant
with the potential difference.

unstructured simplicial meshes. Many articles, in fact, includ-
ing a recent account of the CM [2, p. 73], state that to
compute diagonal material matrices each simplex must contain
its circumcenter (see [7] and [12]–[15]). If this hypothesis
holds, the SP is assigned to each dual node ñs inside the
simplex s and the current Is,t to each primal face fs,t between
two adjacent elements s and t . With reference to Fig. 2(a), let
ñs,t be a new, temporary node corresponding to the intersection
between the dual edge ẽs,t and the primal face fs,t . It is
assumed that the potential is piecewise linear along the edge
ẽs,t , and therefore, the electric-field component along the edge
is constant inside each element, that is

Es
s,t = Ṽ [ñs] − Ṽ [ñs,t ]

|ẽs
s,t |

, Et
s,t = Ṽ [ñs,t ] − Ṽ [ñt ]

|ẽt
s,t |

(8)

where |ẽs
s,t | and |ẽt

s,t | are the lengths of the dual edge parts
inside the two elements. Since the dual nodes are located
at the element’s circumcentres, each dual edge is orthogonal
to its corresponding primal face; hence, the current-density
orthogonal component at the two sides of the primal face is
computed as J s

s,t = σs Es
s,t , J t

s,t = σt Et
s,t , where σs , σt are the

electrical conductivities in the two adjacent elements. In the
end, by enforcing the continuity of the current density normal
components, the relation between the current in the primal
face and the dual nodes potentials can be expressed as

Is,t = (Ṽs − Ṽt )
| fs,t |��ẽs

s,t

��
σs

+
��ẽt

s,t

��
σt

= S̃s,t (Ṽs − Ṽt ). (9)

S̃s,t can be viewed as the equivalent conductance between the
two dual nodes ñs and ñt .

However, in most practical problems, the circumcenter fre-
quently lies outside the element [like in Fig. 1(b) or Fig. 1(d)].
In that case, the dual edge of the Delaunay–Voronoï pair
does not intersect the associated face. Without claiming to
be exhaustive, to circumvent this issue, the solutions proposed
in literature comprise techniques that give up the diagonality
of the material matrices [14], [15] or techniques that do not
even ensure consistency [7], [12], [16], yielding to schemes
whose solution is not exact even for uniform fields.

In [8], a recipe to construct diagonal, consistent, and positive
definite material matrices has been proposed for arbitrary trian-
gular and tetrahedral boundary conforming Delaunay meshes
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Fig. 3. (a) 3-D view of a standard 2-D Delaunay–Voronoï configuration.
(b) Start to move dual node ñt toward ñs . (c) Once one reaches the final
position of ñt , the Voronoï diagram is folded.

for each piecewise uniform and isotropic material parame-
ter. This method is able to fix the Delaunay configuration
in Fig. 1(b) and the one in Fig. 1(c), but is still not able to deal
with non-Delaunay meshes like the one shown in Fig. 1(d).
The solution of [8] is formally the same as (9), but it introduces
a novel signed dual complex in place of the classical Voronoï
diagram. By signed dual complex, we mean that a sign is
associated, in particular, to the lengths of the dual edge
portions |ẽs

s,t | and |ẽt
s,t |. The sign is computed as follows. The

plane passing through face fs,t divides the space into two half-
spaces. We consider the edge portion ẽs

s,t as always spanning
from node ñs to fs,t and we put a negative sign to |ẽs

s,t | if
ñs lies on a different half-space with respect to the node of
s not incident to fs,t . The dual edge portion |ẽt

s,t | is defined
in a similar way. The overall dual edge is constructed as the
union of the two signed dual edge portions |ẽs

s,t | and |ẽt
s,t |,

so it joins nodes ñs and ñt but—differently from the standard
Voronoï dual edge—it always intersects the associated face
fs,t on ñs,t . In configurations like the one shown in Fig. 1(b),
we could imagine that the signed dual edge is the result of
folding of the dual edge on itself, but the Voronoï diagram is
still a partition of the computational domain.

The remaining problem is that most mesh generators like
GMSH or NETGEN do not provide boundary conforming
Delaunay meshes, but even Delaunay meshes. Therefore,
the problem of constructing a diagonal material matrix for
arbitrary simplicial meshes is apparently still open for non-
Delaunay configurations.

B. Non-Delaunay Configurations

Let us analyze the problematic configuration where the
mesh is not Delaunay [see Fig. 1(d)]. The first obstruction
is that the dual of a non-Delaunay primal mesh is a Voronoï
diagram which is not admissible given that it does not partition
the computational domain.

However, in this article, we solve this first issue by defining
a new dual complex that we call folded Voronoï diagram. In
fact, as shown in Fig. 3, we can interpret the dual complex
as the result of the folding of a standard Delaunay–Voronoï
configuration. The areas with their signs remaining after
folding are visible in Fig. 4. We remark that Fig. 4(a) and (c)
exhibits a small triangle (represented in red) with a negative
area. By summing up the signed area of all four dual faces, one
obtains the computational domain as the union of the r and s
triangles. This holds also for tetrahedral meshes by considering
the portions of the dual volume with their appropriate sign.

Fig. 4. Dual mesh of two triangles s and t does partition the computational
domain if one considers the appropriate signs for area of the parts that make
the dual faces.

The second issue is that with non-Delaunay simplicial
meshes, some conductances produced by (9) become negative,
which seems a nonphysical feature, since negative conduc-
tances give rise to currents with a verse apparently opposite
to the electric field even in the presence of positive resistivity.

This article shows for the first time that there is a physical
explanation also for negative conductances. A negative con-
ductivity is the result of an electric port convention change
obtained after folding. In the configuration of Fig. 2(b),
the conductance is defined with the passive sign conven-
tion. On the contrary, on the non-Delaunay configuration of
Fig. 2(c), the direction of the dual-edge is changed after
folding and the active sign convention turns out to be used.
Thus, the negative conductance is the result of the convention
consistency.

A consequence of negative conductances is that the resulting
matrix S̃ is diagonal and consistent, albeit not positive definite.
Indeed, nonpositive definite material matrices seem to be
physically acceptable for the proposed application. In fact,
we remark that the dissipated power is always positive once it
is evaluated with the passive sign convention on all conduc-
tances. These material matrices have been extensively tested
and so far we could not find any case in which the proposed
approach fails.

C. Analogy With Electric Circuits

It is well known that discrete formulations like that leading
to (7) can be interpreted also in terms of equivalent lumped
electric circuits, which can deal with both electrical and non-
electrical phenomena (see [17]). To better understand the
aspects related to a nonpositive definite matrix, the starting
point is a dc network made of positive and negative con-
ductances, in which each finite conductance S̃s,t is repre-
sented by a lumped component connected to nodes ñs and ñt

and the boundary Dirichlet/Neumann boundary conditions are
enforced through dc voltage, respectively, current generators.

The question is whether the solution of such a network,
which is governed by the same S̃ matrix as the DSP problem,
exists and is unique. Instead of studying the dc network,
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Fig. 5. Comparison of the convergence of the capacitance per unit of
permittivity C/ε0 with an increasing number of mesh elements of the proposed
formulation with respect to two FE formulations.

taking inspiration from [17], the network is studied in sinu-
soidal regime with an arbitrary angular frequency ω, and
the positive and negative conductances S̃s,t are replaced,
respectively, by inductances Ls,t = 1/(ωS̃s,t ) and capacitances
Cs,t = −S̃s,t/ω. The sufficient condition to have a unique
solution in this purely reactive sinusoidal network, and there-
fore also in the dc network, is that no resonances occur. Note
that if resonances exist, they exist for any ω because Ls,t and
Cs,t are functions of ω. The probability that the circuit exhibits
a resonance at a fixed frequency ω is zero when arithmetic
with arbitrary precision is used, because the resonances are
countable and, therefore, they form a set of zero Lebesgue
measures in R. With floating-point arithmetic, the probability
of a resonance is not zero anymore, but still extremely low.

IV. NUMERICAL RESULTS AND CONCLUSION

First, we verified that the proposed formulation fulfills the
multi-material piecewise-uniform field patch test even when
the material matrix is not positive definite. Among the further
benchmarks considered, here there is the space to show the
case of a square capacitor (Fig. 5) with h = 1, d = 4, and
l = 2 m, for which the capacitance is known analytically
(C/ε0 = 10.2340925 m). The potential values on the internal
and external electrodes are set, respectively, to 0 and 1 V,
whereas zero normal field is imposed on the remainder of the
capacitor surface. Fig. 5 shows how the capacitance computed
by the proposed formulation converges to the analytical value
when the number of tetrahedral mesh elements is increased.
Even though the presented test case exhibits strong corner sin-
gularities in the solution, the proposed formulation shows an
error which is symmetric with respect to the one of the SP FE
formulations. As a comparison, the results provided by the SP
FE formulation and those provided by the VP FE formulation
VP or the algebraically equivalent MH FE formulation are
also shown. The proposed DSP formulation turns out to be
the fastest complementary formulation thanks to the excellent
sparsity of the provided matrix (see Fig. 6). In the simulation

Fig. 6. (a) Simulation time on the finest mesh (about 870k tetrahedra, 146k
nodes.) Flags M and D mean that algebraic multigrid solver (relative residual
of 10−12) or Intel MKL PARDISO direct solver, respectively, has been used.
(b) Number of nonzero entries (Nnz) of the sparse matrix.

on the finest mesh (about 870k tetrahedra, 146k nodes),
37.2% of circumcenters lie outside their elements and 2.2%
faces exhibit a negative conductance. The exploitation of the
proposed diagonal material matrices to other electromagnetics
problems is an ongoing work.
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