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Integral formulations lead to full matrices that, despite the use of efficient low-rank approximation techniques, are impossible to
be solved when the number of unknowns is large enough. To overcome this limitation, we propose a novel direct-iterative hybrid
technique to solve eddy currents by taking advantage of the domain splitting into disjoint conductors: each subproblem is solved
via direct solvers on each subdomain, whereas the Krylov subspace techniques are applied to compute the mutual effects between
the substructures iteratively. In this way, the entries related to the mutual contributions between the subdomains are not stored.
In particular, this article focuses on testing the convergence of the iterative method.
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I. INTRODUCTION

MATRIX-COMPRESSION techniques based on low-
rank approximations [1] are the major contributors to

the renewed interest in integral formulations for the numerical
solution of eddy-current problems [2]–[5]. These techniques
exploit the matrix structure of the overall problem in order to
reduce the number of entries of the otherwise fully populated
system matrix.

A different approach to reach the goal of avoiding the
computation and storage of full matrices of the whole problem
is represented by iterative techniques, which may be combined
with matrix compression to reduce the problem size further.
Focusing on the eddy-current problems, in [6], some of
the authors have already presented an iterative formulation
inspired by that in [7] to solve the eddy-current problems in
the frequency domain with the volumetric integral formulation
from [5]. In that case, only the entries of a sparse system
have to be computed and stored, leading to a Jacobi iterative
algorithm whose convergence was shown to be quite slow for
general eddy-current problems.

In this article, a novel direct-iterative hybrid technique
for eddy currents, inspired by the method described in [8]
for multiple-scattering problems, is proposed: on the one
hand, the overall domain is split into several disconnected
subdomains, each of them is then solved as an independent
problem by a direct solver, thus reducing the size of the system
to be stored; on the other hand, an improved iterative scheme
is developed to compute the mutual effects between the subdo-
mains to ensure the scheme convergence and to minimize the
number of iterations. To pursue this last goal, the Gauss–Seidel
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(GS) scheme is compared with more sophisticated iterative
techniques based on the Krylov subspaces in order to study
the convergence; in relation to this, it is shown that, for this
formulation, the best method to achieve robustness and fast
convergence is the generalized minimum residual (GMRES)
method [9].

The remaining part of this article is organized as follows: in
Section II, the details of this new iterative scheme applied to
the volume integral formulation of [5] are reported. To write
the equations, we use the geometric framework, whose details
can be found in [5], but, thanks to [10], this is one of the
cases in which the solution is the same as the equivalent
finite-element integral method on the tetrahedral meshes [3].
The advantage of this geometric formulation is that it can be
used on general polygonal/polyhedral elements. In Section III,
we then outline the most common methods based on the
Krylov subspace theory and we compare their performance.
Finally, Section IV draws the conclusions.

II. ITERATIVE SCHEME

In this section, the main equations of the proposed direct-
iterative hybrid method are reported. For the sake of sim-
plicity, we will here refer to a simply-connected conducting
domain �c, but the same approach can be easily extended
to topologically non-trivial domains too, following the same
reasoning in [5].

An eddy-current problem in the frequency domain written
on the geometrical framework shown in Fig. 1, by means of
the volume integral formulation whose details can be found
in [5], leads to a system of equations that reads as

KT = bs . (1)

The system matrix K can be partitioned as K = KR +
jωKM with KR a sparse matrix, KM a fully populated one,
and ω the angular frequency. The right-hand side vector bs is
constituted by the terms that are proportional to the circulation
of the magnetic vector potential As generated by a given
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Fig. 1. Geometrical elements and association with the physical variable of
the considered eddy-current formulation for (a) volume v of the primal grid
and (b) dual grid [11].

source of magnetic field (e.g., a coil). Finally, the vector of
the degrees of freedom (DOFs) T stores the integral of the
electric vector potential along the primal grid edges.

Given �i , i ∈ {1, 2, . . . , N} distinct subdomains, partition-
ing the whole geometry �c such that �c = �1∪�2∪ ... ∪�N ,
a block-diagonal matrix KS D can be defined as

KS D =

⎡
⎢⎢⎢⎣

K1 0 · · · 0
0 K2 · · · 0
...

...
. . .

...
0 0 · · · KN

⎤
⎥⎥⎥⎦ (2)

where each Ki = KRi + jωKMi is related and lim-
ited to the only subdomain �i . Similarly, also the vec-
tor T can be partitioned accordingly to the subdomains as
T = [

TT
1 TT

2 · · · TT
N

]T
.

In order to recover (1), the missing mutual terms linking two
different distinct subdomains have to be expressed. Similar
to what was done in [12], starting from the current density
flowing in each subdomain, we can express the coupling
between two of them by calculating the magnetic vector
potential �A(r) generated on an arbitrary point of the space r by
a constant current density �Jv in a volume v of the grid thanks
to [13]. However, we remark that differently to [12], we do not
compute equivalent currents on an additional coupling surface
(thus approximating the original problem), but we propose a
new iterative formulation that equivalently solves the initial
system of equations.

Referring to [13], we define Pg,v (r) := ∑
S f ∈∂v (r f − r) ·

n f W f (r) as a scalar geometrical parameter that depends only
on the geometry of v and on r , with r f a point on the face f
of v and n f a unit normal vector of this face. W f (r) is another
geometrical parameter that the reader can find in [13]. Then,
we can expand the current density term, using the relations
in [5], leading to

�A(r) = μ0 Pg,v (r)

8π |v| ·
F∑

k=1

I k ẽk (3)

with |v| the volume of v, F its total number of faces, I k

the current flowing through the kth face, and ẽk the kth
dual edge of the dual grid. Dual edges are in a one-to-one
correspondence with the primal grid faces, as it can be deduced
from Fig. 1.

Successively, defining Cih as the face-edge incidence matrix
of the subdomains �i and �h , since the flux �̃i of the

magnetic field across the dual faces f̃ of �i , generated by
the currents Ih flowing in �h , can be written in terms of a
magnetic constitutive matrix M�

ih as

�̃i = CT
ih M�

ihIh = CT
ihM�

ih Cih Th := KM�
i,h

Th (4)

and considering that �̃i = CT
ih [ ã1

i ã2
i . . . ãF

i ]T with

ãẽ
i :=

∫
ẽ,i

ah(r) · dli (5)

which is defined as the integral of the magnetic vector potential
along the dual edge ẽ of the grid of the i th subdomain; after
substituting (3) in (5), we can express each ãẽ

i generated by
the currents Ih as

ãẽ
i =

Vq∑
n

Fvn
h∑

k=1

μ0 I k
h ẽk

h

8π
∣∣voln

h

∣∣ ·
∫

ẽ,i
Pg,n(r)dli . (6)

Here, Vq is the total number of volumes in �h , whereas Fvn
h

is the number of faces of a fixed vh .
In conclusion, the previously introduced mutual constitutive

matrix between two volumes vi ∈ �i and vh ∈ �h can be
defined as

Mkn
ih = μ0ẽk

h

8π
∣∣voln

h

∣∣ ·
∫

ẽ,i
Pg,n(r)dli . (7)

Eventually, by separating the block matrices belonging to
a self-subdomain from the ones linking two different subdo-
mains, (1) can be reinterpreted as

KS DT + jωK�T = bs (8)

with

K� =

⎡
⎢⎢⎢⎢⎣

0 KM�
1,2

· · · KM�
1,N

KM�
2,1

0 · · · KM�
2,N

...
...

. . .
...

KM�
N,1

KM�
N,2

· · · 0

⎤
⎥⎥⎥⎥⎦ . (9)

III. ITERATIVE METHOD COMPARISON

Equation (8) can be used to derive different iteration
schemes. As announced, in this section, we compare the
GS scheme with the Krylov subspace schemes. Specif-
ically, we will focus our attention on GMRES mainly,
in addition to the conjugate gradient squared (CGS) method,
the bi-conjugate gradient stabilized (BiCGSTAB) method, and
the transpose-free quasi-minimal residual (TFQMR) method,
whose descriptions can be found in [14]. As explained in [15],
preconditioned conjugate gradient (PCG) cannot be applied,
since the iteration matrix is not Hermitian or positive-definite,
and thus, previously listed methods are the natural choice.

Furthermore, we specify that the mutual matrix K� could
not be computed and stored in reality. In fact, for all the
iterative algorithms here proposed, only the computation of
�̃� = K�T is necessary as a result of the application of K� to
a given T. Thanks to this, required memory can be drastically
reduced, since the matrix storage is limited to the only KS D,
thus allowing to increase the problem-size dimensions both
in terms of absolute geometrical dimension and in terms of
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DOF number. Surely, an efficient computation of �̃� is crucial
for this approach to be competitive, and, indeed, in [16],
it has been already shown that this can be done, since �̃�

computation is massively parallelizable.

A. Gauss–Seidel
Applying the GS method means, at each step, finding one of

the Ti ∈ �i of (8) by using the most recent T j , j �= i on the
other subdomains to compute the contribution �̃i = K�(i, :)T
on that specific subdomain �i , that is

Ki T
n+1
i = bs,i − jω�̃n

i . (10)

The solution Ti is then updated to be available to find Tn+1
i+1

in the next subdomain �i+1. As explained before, �̃n
i is

evaluated on the fly thanks to (6).

B. Krylov Subspace Methods
The Krylov subspace methods allow to avoid finding a

single Ti on a single �i step by step, and they ensure
convergence also when the inductive coupling between the
subdomains is strong.

These algorithms just require a routine that can apply (8)
to an arbitrary DOF vector T∗ and compute the left-hand
side value. The implemented routine performs the matrix-
vector product KS DT∗, and then, the additional contribution
�̃∗

� = K�T∗ is calculated in the same fashion as previously
described. In this case, one iteration corresponds to N GS
sub-iterations, where N is the number of �c partitions.

The efficiency of the Krylov subspace methods depends on
the spectral properties of the matrix. In our setting, we choose
to precondition the linear system with P = K−1

S D. By this way,
the computing cost between the GS and the other methods
can be evenly compared, because, in both cases, the solution
of the self-subdomains system KS DT = f is necessary. The
varying part is just related to the right-hand side f .

C. Convergence Trend Comparison
Convergence tests reported in the following were done by

using the boundary integral method, whose details are reported
in [4]: this surface formulation is derived from the volumetric
one previously described when written for triangular prisms
with a constant thickness δ and yields to similar results as [5].
In Figs. 2 and 3, the geometries on which tests were done are
shown. In particular, the comparison was carried out by using a
first test case geometry constituted by three subdomains (3SD)
and a second one with eight subdomains (8SD).

First of all, GS, CGS, BICGSTAB, TFQMR, and GMRES
convergence trends have been compared on the same geometry.
Results can be found in Fig. 4 for the 3SD geometry at
f = 10 MHz; in this and in the following two graphs too,
Tref is the reference solution, whereas Tk is the solution
after k function calls. Clearly, under this condition where
the inductive coupling is strong, GMRES shows the best
performance, whereas GS, CGS, and BICGSTAB have a
similar behavior. On the other hand, due to the intrinsic higher
function evaluation numbers of TFQMR and BCGSTAB (L)
algorithms [14], their function call number is the greatest,

Fig. 2. Example of re{J } distribution in the test case geometry with three
distinct subdomains. Red circle represents the centerline of the magnetic field
source coil. Major plate dimensions (l × w): 20.0 × 13.2 mm2.

Fig. 3. Example of re{J } distribution in the test case geometry with eight
distinct subdomains. Red circle represents the centerline of the magnetic field
source coil.

Fig. 4. Convergence trend comparison between GS, CGS, BICGSTAB,
BICGSTAB (L), TFQMR, and GMRES at constant frequency and resistivity.

and so they will not be considered in the following part.
The function call number represents the number of required
computation of (8) to reach a given tolerance.

Figs. 5 and 6 compare GS and GMRES by varying the
geometry size and the resistivity, respectively. In these plots,
CGS and BICGSTAB results are not reported anymore, as their
behavior is similar to GS. The same test was done by varying
the frequency too, accomplishing similar results to Fig. 6.

As far as the geometry size variation is concerned, it is
possible to state that there is not a significant variation of
the maximum required iterations (ITmax) when the geometry
dimension increases. Differently, as already mentioned, when
the inductive coupling of the problem increases, i.e., frequency
becomes higher or resistivity reduces, an important ITmax
variation occurs. Reasons of this behavior are well explained
in Fig. 7, where the complex eigenvalues λ of the GMRES
preconditioned iteration matrix (assembled only for the test-
ing purposes) are showcased: when the frequency increases,
λ values are moved away from the unity, thus increasing the
spectral radius that adversely affects the convergence of the
iterative methods. In this case, GS convergence slows down,
and thus, using GMRES becomes an effective tool to limit the
number of iterations.
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Fig. 5. Convergence trend comparison on the 3SD geometry between the
GS and the GMRES with the increasing domain size. Mesh element size and
plate thickness were kept constant, whereas l and w were multiplied by 2 (x2)
and 3 (x3).

Fig. 6. Convergence trends comparison on the 3SD geometry between GS
and GMRES with varying resistivities ρ. Other parameters were kept constant.

Fig. 7. Eigenvalues of the assembled equivalent system at varying
frequencies.

Finally, regarding the number of partitions N , some tests
have been performed on the 8SD geometry in Fig. 3 by
clustering the subdomains into different groups, thus obtaining
three test geometries with two, four, and eight partitions.
Results show that the iteration number does not change at
all. The same behavior was observed when increasing the
mesh density: the solution becomes more accurate, but ITmax is

practically constant. These two last tests show that the iterative
scheme proposed is robust, and, differently to the one in [6],
it can be used with an arbitrary geometry.

IV. CONCLUSION

In this article, a new direct-iterative hybrid scheme to solve
the eddy currents on distinct subdomains by means of integral
formulations was proposed. When a limitation in the memory
occurs, this approach becomes convenient, since the most
part of the matrix storage is avoided. Specifically, when the
frequency is within some tens of kilohertz, the number of
iterations is limited to a few iterations with both GS and
GMRES methods. Conversely, when the frequency exceeds
some megahertz and the resistivity is low like that one of
a copper conductor, ITmax becomes larger: in these cases,
the GMRES scheme was shown to be effective to limit the
required iterations and ensure convergence within some tens
of iterations.
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