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The Time-Domain Cell Method Is a Coupling of Two Explicit
Discontinuous Galerkin Schemes With Continuous Fluxes
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The cell method (CM) or discrete geometric approach (DGA) in the time domain, already introduced by Codecasa et al. in 2008 for
the coupled Ampere–Maxwell and Faraday equations, is here recast as a Galerkin Method similar to the finite-element method (FEM).
In particular, it is shown to be a mixed method comprising an explicit scheme and two discontinuous Galerkin (DG) FEM spaces
formulated on dual meshes, in which each of the two function spaces provides a continuous numerical flux choice for its dual mesh
counterpart. The implemented version is shown to compare favorably in terms of accuracy and efficiency with respect to the classic
conforming FEM scheme using Whitney elements. When tested on the same tetrahedral mesh, the Courant–Friedrichs–Lewy (CFL)
condition for the proposed approach is a factor of 2 less restrictive on the time step with respect to the curl-conforming FEM
scheme.

Index Terms— Discontinuous Galerkin (DG), explicit time-stepping, finite difference in time-domain (FDTD), time-domain Maxwell,
unstructured grids.

I. INTRODUCTION

FOR time-dependent problems in high-frequency electro-
magnetics, the finite difference in time-domain (FDTD)

method [1] is arguably the most long lived and ubiquitous
numerical method available in the literature. Nevertheless,
when solving problems that present curved interfaces between
different materials, it is natural to seek a numerical method
that works well on an unstructured grid (usually a simplicial
one, given the abundance of mesh generators in such case).

In this setting, the use of curl conforming, edge element
based [2], formulations within the finite-element method
(FEM) is a common practice in the computational electromag-
netics (CEM) community. Numerical time-stepping schemes
based on said finite elements involve inverting large sparse
mass matrices which, due to the support of the basis functions,
are banded but not block diagonal, making the inverse a
fully populated matrix (in general). This matrix inversion
becomes rapidly unfeasible as the size of the problem to be
solved increases. The common choice is rather to solve the
linear system iteratively at every time step, using a conjugate
gradient (CG) solver (the mass matrix is symmetric positive
definite), which preserves the sparsity of the system, but
involves several matrix–vector product operations per time step
to converge. Moreover, if one is interested in both electric-
and magnetic-field values, an additional issue is that one of
the two fields is approximated by polynomials of one degree
lower than the maximum, which fact bounds the total order
of accuracy of the method [3].

To avoid these issues, alternative FEM formulations based
on completely discontinuous basis functions have been more
recently explored, in which the basis functions for both
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fields are piecewise polynomials (of arbitrarily high degree)
whose support is restricted to a single element, the so-called
discontinuous Galerkin (DG) FEM. The DG approach does
provide naturally block-diagonal mass matrices, but the
resulting global function space in which the numerical
solution lives is clearly much larger than the physically
meaningful one, and nonphysical solutions do indeed appear,
which are called spurious modes in the literature. The
general recipe to recover a reliable numerical solution hinges
(see [4] and references therein) then on a combination of
the following: artificial numerical energy dissipation, (often
unreasonably) high degree in the approximating polynomials,
and the introduction of additional unknowns living on the
skeleton of the mesh with fine-tuned penalty parameters
(mesh size and polynomial degree dependent).

A recent alternative road to the solution of the matter, intro-
duced by Codecasa and Politi [7] as a kind of explicit-in-time
finite-integration technique (FIT [8]) on tetrahedral meshes,
has been further developed by Codecasa et al. [9], [10]. This
latter approach is theoretically rooted in the cell method (CM,
see [5]), alternatively called a discrete geometric approach
(DGA, see [6]). This method is, in the authors’ opinion, not
well understood till date, as it shares both properties from the
family of finite-volume methods (its reliance on conservative
flux variables) and from the FEM (its use of basis functions
defined in a piecewise fashion to approximate the unknown
fields).

The present contribution aims at formally recasting this
method for the numerical solution of the time-dependent
Maxwell equations as the DG FEM method and in passing
shed some more light on its main advantageous properties.
In Section II, the basic CM terminology and the rationale of
the method are recalled. In Sections III and IV, the novel
DG-FEM spaces and weak forms for the discrete system
of equations are given. Section V presents the numerical
results which show the performance of the given method
in comparison with the known FDTD and FEM approaches.
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Concluding remarks and hints at future work directions are
given in Section VI.

II. ABSTRACT CELL METHOD FORMULATION

We aim to approximate, via the CM, the time-dependent
Ampère–Maxwell and Faraday equations

ε∂t e(r, t) = ∇ × h(r, t) (1)

μ∂t h(r, t) = −∇ × e(r, t) (2)

to be solved ∀t ∈ [0,+∞) and for each r in the bounded
domain � ⊂ R

2,3. For simplicity of presentation, we consider
the source-free equations with time invariant materials. If the
initial conditions for the electric field e(r, 0) and the magnetic
field h(r, 0) are such that the electromagnetic Gauss laws are
also satisfied, the solution of (1) and (2) will satisfy all four
Maxwell equations for all times t .

The CM [5] is based on the use of two dual meshes: a
primal simplicial mesh (i.e., triangular, tetrahedral) as in the
FEM, and a polytopal one which is the barycentric dual of
the primal grid. There are standard procedures by which we
assign to each d-dimensional geometric entity of the mesh an
(D-d)-dimensional entity in the dual mesh (see [5], [6]).
In the CM approximation, naturally formulated in D = 3
dimensions, the discrete degrees of freedom (DoFs) are chosen
a priori to be line integrals of the unknown e and h fields on
primal and dual mesh edges, respectively. We denote them
by column vectors u and f . The curl operators on the r.h.s.
of (1) and (2) are written in integral form by using Stokes’
theorem on each primal and dual facet plus the definition
of the DoFs. They are thus naturally encoded by the edge-
to-facet incidence matrix C and its transpose CT . To have
a complete equivalent of the continuous system of integral
equations, mappings between line integrals on primal [dual]
edges and fluxes on [primal] dual facets must be constructed,
sometimes called Hodge star operators [11], which act as a
discrete geometric counterpart of the material tensors

Mε∂t u = CT f (3)

Mμ∂t f = −Cu (4)

where the form of square matrices Mμ, Mε depends on the
analytic form of the material tensor and on the geometric prop-
erties of the mesh. In [7], a procedure to obtain block diagonal
(hence, cheaply invertible) matrices for these operators was
developed for the first time.

III. MESH AND APPROXIMATION SPACES

We wish to show that the system of ordinary differential
equations in (3) and (4) is the coupling of two DG-FEM
schemes with continuous fluxes. To show this, we assume a
starting shape-regular triangulation (i.e., a simplicial complex)
for � and proceed as follows: take each mesh element T , com-
pute its centroid, and connect it via a segment to the barycentra
of the facets in its boundary (denoted ∂T ). Successively, take
the edges on the boundary of each facet of T and connect
the centroid of the given facet to all barycentra of said edges.
Finally, take the two nodes in the boundary of each mesh edge
e ⊂ ∂T and connect them to the centroid of the edge.

Fig. 1. 2-D example of the fundamental geometric entities involved in the
CM formulation.

Fig. 2. 3-D fundamental cell.

We note that if � ⊂ R
2, the facets are already 1-D edges

by definition; therefore, one step in procedure can be skipped.
In any case, each D-dimensional simplex T of the original
mesh is divided into D+1 disjoint subsets, which are irregular
quadrilaterals for dimension D = 2 and irregular hexahedra
for D = 3. Each of these objects, which we call fundamental
cells and denote with M in the rest of the article, is uniquely
identified by a pair (T, n), for every mesh vertex n ⊂ ∂T .
Subsequently, all fundamental cells M for which n ⊂ ∂M can
be agglomerated to obtain a dual cell (a nonconvex polytope)
T̃ : the usual CM whole dual edges are retrieved by the union
of each pair of segments connecting the centroid of a mesh
facet to the two barycentra of neighboring simplices.

Fig. 1 shows the result of the procedure for D = 2:
the primal element T is a triangle and T̃ is the grayed,
possibly nonconvex polygon obtained by barycentric subdi-
vision, followed by the appropriate set union of fundamental
cells. For D = 3 we only show, in Fig. 2, an example of
a fundamental cell M, which is always bounded by three
quadrilateral surfaces S1, S2, S3 (which are intersections of
∂M with primal facets of the mesh) and three quadrilateral
surfaces S̃1, S̃2, S̃3 (which are intersections with the facets of
the dual mesh). This kind of partition was already exploited
in [10] (to make the method suitable for graphical processing
units) and in [9] (to extend the time-domain CM to conductive
materials).

We introduce two sets of basis functions for the approxi-
mation of the unknown fields

e(r, t) =
2N∑
i

ûi (t)w
i (r), h(r, t) =

2Ñ∑
i

f̂i (t)w̃
i (r) (5)
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where [Ñ ]N is the number of oriented [dual] primal edges
in the mesh and where new semi-discrete time-dependent
DoFs ûi (t), f̂i (t) have been defined. We stress the important
factor 2 in the summations’ upper limit, which comes from
the partition into fundamental cells which indeed splits every
primal and dual edge into two disjoint segments of equal
length.

The basis functions depend on r but are required to
be piecewise uniform in each M, therefore, discontinuous.
Nevertheless, if we denote a j [ã j ] any primal [dual] halved
edge, the following properties hold:

wi (M), w̃i (M) ⊂ [P0(M)]D ∀M, (6)
〈wi (M), a j 〉 = δi j , 〈w̃i (M), ã j 〉 = δi j (7)

where [P0(M)]D is the space of vector-valued constant func-
tions on M, the inner product is the trivial Euclidean one,
and δi j is the Kronecker delta tensor. Clear dependence on
r amounts to dependence on M and, for both sets of functions
only three basis functions do not vanish when we restrict to
any M ⊂ �.

If we take now as reference an arbitrary M, without loss
of generality we can use the indices {1, 2, 3} for the primal
and dual halved edges in ∂M, as shown in Fig. 2. It is then

wi (M) = a j × ak

ai · a j × ak
, w̃i (M) = ã j × ãk

ãi · ã j × ãk

where {i, j, k} is any permutation of {1, 2, 3}. It is trivial
to prove through Euclidean geometry that, by virtue of the
duality pairing in (7), the wi (M) have continuous tangential
components on S1, S2, S3 (or the green oriented edges in the
2-D version), while the w̃i (M) have continuous tangential
components on S̃1, S̃2, S̃3 (or, alternatively, the blue edges in
the 2-D version). We denote with W [W̃ ] the linear span of
the wi (M) [w̃i (M)].

IV. DG FEM FORMULATION

Starting back again with the continuous problem in
(1) and (2), the equations are tested against the basis functions
element-by-element as in DG-FEM

∑
M⊂�

(∫
M

ε∂t e · w
)

=
∑

M⊂�

(∫
M

∇ × h · w

)
∀w ∈ W

∑
M⊂�

(∫
M

μ∂t h · w̃
)

= −
∑

M⊂�

(∫
M

∇ × e · w̃
)

∀w̃ ∈ W̃ .

It easily follows (through integration by parts and the diver-
gence theorem) that:∫

M
∇ × h · w =

∮
∂M

h × w · n̂
∫
M

∇ × e · w̃ =
∮

∂M
e × w̃ · n̂

where n̂ is the outward-pointing unit normal vector on ∂M,
and we have also used the fact that the test functions are
piecewise uniform. Furthermore, if we finally expand the

unknown vector fields in W and W̃ , respectively, we get the
weak form

∑
M⊂�

∫
M

ε

j=2N∑
j=1

∂t û jw
j (M) · w

=
∑

M⊂�

∫
S̃

�=2Ñ∑
�=1

f̂�w̃
�(M) × w · n̂

∑
M⊂�

∫
M

μ

�=2Ñ∑
�=1

∂t w̃
�(M) · w̃

= −
∑

M⊂�

∫
S

j=2N∑
j=1

û jw
j (M) × w̃ · n̂

∀w ∈ W and ∀w̃ ∈ W̃ , where S̃ = S̃1 ∪ S̃2 ∪ S̃3 and
S = S1 ∪ S2 ∪ S3. Here the staggered partial conti-
nuity of the test functions has been exploited to obtain
the full semi-discrete formulation. Note that no numeri-
cal flux averaging (which is root of spurious solutions in
DG approaches) or upwinding (which numerically dissipates
energy) is needed.

If we now go back to the reference M, all indices run
from 1 to 3 and it can be proved through direct symbolic
computation that the 3 × 3 matrix Ĉ whose entry at the i, j
position is given by∫

S
wi (M) × w̃ j (M) · n̂ =

∫
S̃
wi (M) × w̃ j (M) · n̂

is equal to

Ĉ =
⎛
⎝ 0 1 −1

−1 0 1
1 −1 0

⎞
⎠ . (8)

It is a (tedious) vector algebra exercise to show that this is valid
on any M of the mesh up to edge orientation. This key fact
in (8) can also be used to optimize the memory consumption of
the algorithm. Indeed, the same Ĉ matrix (and its transpose)
can be stored once and used for all elements in the mesh.
The last step which allows us to retrieve the algebraic form of
(3) and (4), as we perform the sums over the whole mesh of the
above derived weak form, is to note that physical interpretation
of the DoFs has not changed, halved line integrals entries
have identical r.h.s rows and can be summed back together
(with orientation) to retrieve the original discrete geometric
interpretation.

V. NUMERICAL RESULTS

We now compare the proposed method with the classic
FDTD method and the classic version of the FEM curl-
conforming formulation. Time is always discretized using the
leapfrog scheme. As a domain �, we consider a 3-D metallic
rectangular waveguide with cross sections aligned with the
xy plane: the authors in [9] have shown that one can obtain a
time-domain closed-form solution for the fundamental mode
(the TE10 mode) impinging at z = 0 and encountering a per-
fectly electric conducting (PEC) termination at a fixed z = L.

We can then test convergence by studying the relative
errors ‖ε‖ in the appropriate discrete L2 norm: Fig. 3 shows,
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Fig. 3. All the methods tested converge as O(h) in L2 norm error, with
h being the maximum edge length in the grid.

Fig. 4. Log–log plot of the maximum allowed �t versus the relative accuracy
on the test problem for all three methods.

in double logarithmic scales, that the two tetrahedral grid
methods are more accurate than the FDTD for grids of
comparable size, and all three methods converge linearly with
h (average mesh size), i.e., they are exact for piecewise-
uniform fields. This last detail is theoretically predicted for the
FEM and DGA schemes, and justified for the FDTD (which
has theoretically O(h2) convergence), through a closer look at
the regularity of the closed-form solution (see [9]).

The upper limit value for the time step �t on succes-
sive uniform spatial refinements of the cubic domain for all
three methods has also been numerically estimated. To do
so, we used the power iteration method to estimate the
largest eigenvalue of the discrete evolution matrix. Fig. 4
shows the resulting �t versus the accuracy. Since the time
step size is an important factor in computational complexity,
the sustained factor 2 between the DGA approach and the
FEM approach (for equal accuracy) shows the promise of
the proposed method (which we recall is also explicit in
time). This empirical result is an original finding of the
present contribution, a theoretical study of this behavior for
the Courant–Friedrichs–Lewy (CFL) condition is still lacking
and goes beyond the scope of this work. Fig. 5, which shows
asymptotic computational complexity rates with respect to the
measured accuracy of the methods (per time step and for a full
simulation) for the same model problem, shows the method
is competitive with FDTD (the studied example presents no

Fig. 5. Log–log plot of the computational cost in seconds versus the relative
accuracy on the test problem.

staircase approximation) and an order of magnitude more
efficient than Whitney elements.

VI. CONCLUSION

In the present contribution, it was shown that the CM
approach in the time-domain solution for Maxwell equations
can be entirely recast in the framework of the DG FEM if
two lowest order approximations are adopted on staggered
barycentric dual meshes, with numerical flux choices made
obvious by the partial continuity properties of the basis func-
tions. The present form plows the soil for an extension of the
scheme to orders of convergence higher than linear in space,
which is currently underway and will be reported in a future
submission.
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