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Mirror Symmetry in Integral Formulations for Eddy Currents
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This contribution addresses the exploitation of mirror symmetry (formally, the abelian D1 and D2 dihedral symmetry groups) in
various integral formulations for eddy current problems. The novelty of the contribution is in particular how to rigorously treat
non-simply-connected conductors when computing the first cohomology group generators on the symmetry cell of the problem
only.

Index Terms— Cohomology, eddy currents, finite element method–boundary element method (FEM–BEM), integral formulations,
mirror symmetry.

I. INTRODUCTION

EXPLOITING symmetry has been recognized as an effec-
tive method to save a sensible amount of simulation

time. It allows to solve the problem on a given domain
K by solving a family of problems on a symmetry cell S
instead. It is impossible to survey all the literature, so we just
mention [1] for the finite element method (FEM) and [2] for
a FEM–boundary element method (FEM–BEM) based on the
magnetic vector potential.

This article considers the efficient boundary integral (BI)
formulation for solving eddy current problems, which employ
a magnetic scalar potential [3], the volume integral (VI)
formulation based on the electric vector potential [4], and the
FEM–BEM in [5]. These three methods are quite different,
but they share the necessity of computing the so-called coho-
mology generators [5]–[7] to obtain a consistent design of
electromagnetic potentials.

The purpose of this article is to present the details of coho-
mology computation in relation to the exploitation of mirror
symmetry, i.e., the abelian D1 and D2 dihedral symmetry
groups, in the aforementioned integral formulations for eddy
currents. For example, Fig. 1 represents a conductor with D2

symmetry. Similar to the standard solution surveyed in [2],
the starting point is to have a matrix which is block-circulant.
The main issue is that in the three considered formulations
this is not true in general because of the presence of nonlocal
constraints due to cohomology.

The general idea to get a block-circulant matrix even in
presence of non-simply-connected domains, introduced in [6]
and [7] for cyclic symmetry, is that the representatives of
the cohomology generators must share the same symmetry
of the problem. Yet, the case of mirror symmetry is quite
different with respect to cyclic symmetry because the solution
introduced in [6] and [7], based on the identifications of
the elements in the two symmetry parts of the boundary
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of S, cannot be used here as it may be deduced by looking
at S of Fig. 1. Hence, since the idea of the topological
stitching applied to cyclic symmetry cannot be considered,
the algorithm for the computation of cohomology generators
required for this application must be inspired to something
different than what proposed in [6] and [7].

We observe that the techniques for cohomology com-
putation presented so far in literature, derived from the
Hiptmair–Ostrowski (H–O) algorithm [8], compute a basis of
absolute H 1(∂K) generators—with ∂K being a triangulated
surface without boundary—for VI formulations (see [4], [7])
and a basis of the relative H 1(�, ∂�) cohomology group for
surface integral formulations [3], [6], where � is the triangu-
lated surface—possibly with boundary—representing the thin
conductor. Differently, the efficient computation of absolute
H 1(�) generator, when � has a boundary, is required in the
present case for exploiting mirror symmetry with the integral
formulations here considered and, as far as we know, this
aspect has not been treated yet: this contribution aims at filling
that gap.

In Section II, we first introduce a proper set of equations to
study eddy currents by using either the VI or the FEM–BEM
approach. Then, the very idea to compute the required
representative of absolute H 1(�) generators is exposed in
Section III. Then, the proposed approach and described imple-
mentation are validated by exposing the numerical results
in Section IV: the agreement of the solutions obtained by
considering either the full conductive structure K or the
symmetry cell S only is verified by solving eddy currents
on the conducting plate with holes of Fig. 1 with both
the VI formulation and FEM–BEM. In addition, we carry
out the same comparison (solution on K versus S) when
using the FEM–BEM approach to study the behavior of an
electromagnetic valve.

II. VI AND FEM–BEM FORMULATIONS

A. VI Formulation

We now briefly present the VI formulation to study eddy
currents in the frequency domain, which some of the numerical
results are referred to. We consider the equations detailed in [9]
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Fig. 1. Top: an example of symmetric nontrivial conducting domain K and
its boundary ∂K, i.e., a surface without boundary. Right corner: the symmetry
cell S and its boundary � = ∂K ∩ ∂S , a surface with boundary.

Fig. 2. (a) Primal geometrical elements of a primal volume of the mesh.
(b) Dual geometrical elements construction and identification.

that derive from the use of the compatible numerical method
more extensively exposed in [10].

Given a non-simply-connected domain �c, the considered
framework requires to encode it into a cell complex K,
which will be hereafter considered as the primal grid, that
distinguishes from its barycentrical dual subdivision denoted
as K̃. These cell complexes will be, respectively, formed by
Nv primal volumes v, N f primal faces f , Ne edges e and Nn

nodes n and by Nn dual volumes ṽ , Ne dual faces f̃ , N f dual
edges ẽ and Nv dual nodes ñ (see Fig. 2).

The vector of the currents flowing through the faces of K
is

I = C(T + Hi) (1)

where T denotes the array of the degrees of freedom (DOF)
storing the integral of the electric vector potential along the
edges of K, C is a face-edge incidence matrix that also
configures as a discrete curl operator, i the array of the
independent currents flowing in �c and where the matrix H
stores all the representatives of the generators that constitute
a basis of the first cohomology group H 1(∂K).

Then, by introducing the two discrete constitutive relations
Ũ = RI and Ã = MI linking I to the array of the electromotive
force Ũ along the edges of K̃ and to the array of the integral
of the magnetic vector potential Ã still along the edges of K̃
and by enforcing Faraday’s law in its local and nonlocal forms

CT Ũ + iω�̃ = 0 (2)

HT (CT Ũ + iω�̃) = 0 (3)

where �̃ is the magnetic flux through the faces of K̃, the final
system of equations to be solved is[

K KH
HT K HT KH

][
T
i

]
=

[
bs

HT bs

]
. (4)

In this last expression K = CT (R + iωM)C and
bs = −iωCT Ãs wherein Ãs is the integral of the magnetic
vector potential along K̃ edges produced by a known magnetic
source such as a coil crossed by a known current or such as a
variable imposed magnetic field. In addition, to achieve (4) it
is necessary to rewrite the flux of the magnetic induction field
across the dual faces f̃ as �̃ = CT Ã.

Consequently, in this article, we focus on the computation of
the matrix H of (4) when �c shows a mirror symmetry and
so the matrix storing the representatives of the cohomology
generators can be computed by referring to the symmetry cell
S only. This is achieved by retrieving the generators of H 1(�).

B. FEM–BEM

The symmetric FEM–BEM eddy current formulation writ-
ten in terms of magnetic vector potential, following [5], leads
to a system of equations of the form:[

S + iωP + N L − 1
2 B

LT − 1
2 BT V

][
AFEM

�BEM

]
=

[
is
0

]
(5)

where S and P are the standard sparse FEM stiffness and
mass matrices, B is a sparse coupling matrix, and N, L
as well as V are dense BEM operators. AFEM and �BEM

stems from the arrays of the DOF representing, respectively,
the unknown magnetic vector potentials and the unknown
values of the nodal stream functions. The right-hand side
models an imposed current source is .

Yet, equations in (5) are valid iff the computational domain
is simply connected. This stems from the fact that electrical
surface current density associated with �BEM is discretized
using, on the mesh surface � = ∂K, divergence-free trial
functions H (div0, �). Differently, for a non-simply-connected
domain, nonlocal relations also have to be considered in a
similar way to that one previously developed and described
for the VI formulation. Hence, in general, expressing this
nonlocal basis requires also, in this case, the calculation of
a representative of absolute H 1(�) cohomology generators,
where � is a surface without boundary. The generators,
encoded into H leads to additional blocks of the system HT VH
and ηH, θH that, as in (4), are a linear combination of H with
the left-hand side of (5).

In conclusion, the system to be solved becomes⎡
⎣S + iωP + N L − 1

2 B ηH
LT − 1

2 BT V θH

ηT
H θT

H HT VH

⎤
⎦

⎡
⎣AFEM

�BEM

i

⎤
⎦ =

⎡
⎣is

0
0

⎤
⎦ (6)

where i contains the unknown nonlocal surface currents that
correspond to the cohomology generators.

Once again, when moving from the complete conducting
domain K to the symmetry cell S, this last one does not
exhibit the same topological properties of K anymore; the
boundary of S, namely �, is a surface that has a boundary,
therefore, to try to retrieve the absolute H 1(�) generator with
the usual procedure inspired to the H–O algorithm would not
yield an equivalent system with respect to the original one
computed on K instead. To overcome this situation, as for
the VI formulation, a new algorithm must be developed to
correctly obtain the cohomology generators.
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Fig. 3. (a) Tree on the dual edges (in red) is built and joint to one of the
connected components C1 (thick magenta edge). (b) Tree on the free primal
edges is built (in blue): two edges on the other connected components C2 and
C3 not in the primal/dual trees remains (yellow circles).

III. COHOMOLOGY COMPUTATION ON S
Let us define the duality operator D on � as the operator

that returns the dual edge ẽ which is dual to a given primal
edge e, i.e., ẽ = D(e). The proposed fast and combinatorial
algorithm, running in linear time, to find cohomology gener-
ators for a surface with boundary is as follows.

1) Consider the dual graph which is composed by dual
edges which are dual to interior primal edges, i.e., dual
edges in the set {D(e)|e ∈ (� − ∂�)};

2) Find a dual spanning tree T̃ on �, i.e., an arbitrary
spanning tree on the dual graph [Fig. 3(a), red edges];

3) For one edge b ∈ ∂� (i.e., a random boundary edge of
�), put the dual edge b̃ = D(b) in T̃ [Fig. 3(a), thick
magenta edge];

4) Find a primal spanning tree T on � by using as a graph
the set of primal edges not in D−1(T̃ ) [Fig. 3(b), blue
edges];

5) Find the set Ẽ of dual edges not belonging to T̃ and to
D(T ) [Fig. 3(b), yellow circles];

6) Let {C̃(ẽ)|ẽ ∈ Ẽ} be a set of dual edges that belong
to the dual cycle that originates when considering the
graph ẽ ∪ T̃ . The dual cycle is oriented by assigning a
+1 or −1 incidence coefficients to each dual edge of
the dual cycle.

7) The primal edges {D−1(C̃(ẽ))|ẽ ∈ Ẽ} with the same
incidence coefficients are representatives of a basis of
the first cohomology group H 1(�) (Fig. 4, green edges).

IV. NUMERICAL RESULTS

We first present a linear eddy current problem computed
in the frequency domain with both VI and FEM–BEM code

Fig. 4. Starting from a free edge of each connected component sought
generators are retrieved starting from (a) C2 and (b) C3.

Fig. 5. Support of the representatives of the retrieved generators on S of
Fig. 1. Computation time for the retrieval: less than 1 s.

Fig. 6. Real part of the current density flowing in S of Fig. 1 plate (top
view) solved (a) with FEM–BEM and (b) with the VI code.

for the thin plate with holes of Fig. 1 (dimension: 0.7 ×
1.0 × 0.025 m). For this simulation, it was used ρ = 1.68 ·
10−8 �m as plate resistivity, and a circular wire centered in
(0, 0, 0.035 m) of radius r0 = 0.25 m as source of magnetic
field. The wire is crossed by a sinusoidal current I rms

s = 10 A
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TABLE I

OHMIC LOSSES COMPARISON

Fig. 7. Dissipated active power Pdiss computed with VI and FEM–BEM on
different meshes of the symmetry cell.

Fig. 8. Flux linkage calculation comparison between full and mirrored model
of the valve. Inset: magnetic induction in the valve (quarter model).

at a frequency f = 50 Hz. The retrieved generators are shown
in Fig. 5 while Fig. 6 shows the current density flowing in S
when computed with the two declared approaches. In addition,
Table I reports a comparison of the dissipated power in
the plate when calculated on the full (K) or mirrored (S)
cell: an excellent agreement is exhibited. The related power
convergence trend is exposed in Fig. 7.

In Figs. 8 and 9 the results of the FEM–BEM simulation
of an electromagnetic valve driven by a coil crossed by
a 1.2 · 563 [At] current are reported. The valve housing is

Fig. 9. Electromagnetic force Fz calculation comparison between the full
and the mirrored model of the valve.

made of steel, diameter d = 28.3 mm, height h = 36.0 mm.
Both the results obtained considering K and S are plotted in
terms of flux linkage and in terms of vertical electromagnetic
force Fz computed through the Maxwell stress tensor [11].
Apart from the two curves not perfectly superimposed due to
the chosen tolerance of Newton’s iterative scheme applied to
solve the time-domain nonlinear eddy current problem arising
from the B–H characteristic of the steel, the comparison sub-
stantially confirms the correctness of the proposed approach.
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