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New Magic Formula Demonstration Shows Unexpected Features
of Geometrically Defined Matrices for Polyhedral Grids
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Magic formulas are the geometric identities at the root of modern compatible schemes for polyhedral grids. We present rigorous
yet elementary proofs of the magic formulas originating from Stokes theorem. The proofs enlighten new fundamental aspects of
the mass matrices produced with the magic formulas. First, the construction of the mass matrices works for an unexpectedly broad
type of mesh cells. Second, they show that dual nodes can be arbitrarily positioned thus extending the construction of the dual
barycentric grid.
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I. INTRODUCTION

THE magic formulas, introduced in [1] and [2], enable a
simple mapping of degrees of freedom (DoFs) attached

to edges and faces to a constant vector field.
Magic formulas are at the root of modern compati-

ble or mimetic schemes [3], [4]. They play a major role in the
construction of discrete Hodge operators [5], and their cor-
responding algebraic realization given by mass matrices [6].
Here, a well-established design strategy decomposes local
mass matrices as the sum of a consistent and a stabilization
term [7]. Such a decomposition of the local mass matrix
is suggestive since each term plays a specific role, namely,
the consistent term, that is constructed starting from magic
formulas, enforces a polynomial consistency property, while
the stabilization term ensures positive-definiteness, preserving
the consistency already achieved [4]. In addition, magic for-
mulas have broader applicability than the construction of mass
matrices. As an instance, they can be used to reconstruct the
vector fields for postprocessing and imaging purposes.

In this work, we present novel proofs of the magic formulas
using Stokes theorem. The proofs enlighten new fundamental
aspects of the mass matrices produced with the magic for-
mulas. First, the construction of the mass matrices works for
an unexpectedly broad type of mesh cells, thus debunking
the conventional wisdom that mesh cells have to be star-
shaped [2], [4]. Second, it extends the construction of the dual
grid [6], [8] in the discretization since it shows that dual nodes
can be arbitrarily positioned, even outside the single mesh cell.

II. GEOMETRY OF PRIMAL AND DUAL GRID

Without losing generality, we will focus on a grid consisting
of a single polyhedral cell c, Fig. 1(a). To describe the geo-
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Fig. 1. (a) Primal and (b) dual geometric elements of a polyhedron c ∈ C .

metric elements of the pair of grids, we introduce a Cartesian
system of coordinates with the specified origin and we denote
by x = (x1, x2, x3)

T the coordinates of its generic point.
The geometric elements of the primal grid are nodes n,

edges e, faces f , and the cell c itself. The geometric elements
of the primal grid are provided with an inner orientation [8].

Now, a dual grid is introduced; each geometric entity of the
dual grid is in one-to-one correspondence with a geometric
element of the primal grid and it is constructed by means of
the barycentric subdivision [8] of the primal grid. Therefore,
the dual of a primal cell c is the dual node ñc, where symbol
“∼” denotes geometric elements of the dual grid; similarly,
the dual of a primal edge e is the dual face f̃e and the dual
of a primal face f is the dual edge ẽ f , Fig. 1(b)

Precisely, a dual node ñc coincides with the barycenter bc

of a cell c; a dual edge ẽ f joins ñc with the barycenter b f

of a primal face f ; a dual face f̃e is a quadrilateral surface
made of a union of a pair of triangles; the first has the vertices
ñc, be, b fi , the second has vertices ñc, be, b f j , with fi , f j the
two faces such that e = fi ∩ f j , with i = i(e) and j = j (e).

Dual edge ẽ f and dual face f̃e are endowed with outer orien-
tation [8], in such a way that each of the pairs (e, f̃e), ( f, ẽ f )
is oriented according to the right-hand rule.

To each of the following geometric elements e, f, f̃e, ẽ f of
the primal or of the dual grid, we associate their corresponding
vectors e, f , f̃ e, ẽ f respectively. Any of these vectors will be
represented with a column array of its Cartesian components.
Vector e is the edge vector associated with edge e; for example,
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e = ni − n j , i �= j , where ni and n j are the coordinates of
the boundary nodes of e. te represents the unit vector of e in
such a way that e = |e|te, where |e| denotes the length of e.
Vector f is the face vector associated with face f defined as
f = | f |n f , where n f is the unit normal vector orthogonal to
f and | f | denotes the area of f . In a similar way, vector ẽ f is
the edge vector associated with the dual edge ẽ f ; for instance,
ẽ f = b f − ñc, see Fig. 1(b). Vector f̃ e is the face vector
associated with the dual face f̃e. Face vector f̃ e is equal to
f̃ e = 1

2

(
ẽ fi ×(be − ñc)− ẽ f j ×(be − ñc)

)
with fi , f j two faces

such that e = fi ∩ f j , with i = i(e) and j = j (e), and in
such a way that the expression induces the correct orientation
on f̃ e, see Fig. 1(b).

III. THE MAGIC FORMULAS AND THEIR PROOFS

Let us consider a pair of vector fields u,w : R
3 → R

3 along
with a scalar field w : R

3 → R defined on a given cell c. The
following well-known integration by part formulas hold∫

c
u∇ ·w dV = −

∫
c
∇ · uw dV +

∫
∂c

u · nw d S (1)
∫

c
u · ∇ × w dV =

∫
c
∇ × u · w dV +

∫
∂c

u × n · w d S. (2)

Given a cell c, we denote by |c| its volume. We write
“ f ∈ ∂c” meaning that f is varying over all (oriented) faces
of c. Similarly, we write “e ∈ ∂c” meaning that e varies over
all (oriented) edges of c. Finally, given a polygon f in some
(affine) plane of R

3, we write “e ∈ ∂ f ” meaning that e varies
over all (suitably oriented) edges of the boundary of f .

Theorem 1 (Reconstruction From Face DoFs): Let u be a
constant vector field defined on a cell c. Choose an arbitrary
dual node ñc ∈ R

3 and define ẽ f := b f − ñc as at the end of
Section II. The following equality holds:

u = 1

|c|
∑
f ∈∂c

(u · f ) ẽ f . (3)

Proof: Let w ∈ R
3. Thanks to (1), we have

|c| u · w =
∫

c
u · w dV

=
∫

c
u · ∇(w · (x − ñc)) dV

=
∫
∂c
(u · n) (w · (x − ñc)) d S

=
∑
f ∈∂c

(u · f ) ((b f − ñc) · w). (4)

By using the definition of ẽ f , it follows that

|c| u · w =
∑
f ∈∂c

(u · f ) (ẽ f · w). (5)

Since w is arbitrary, we obtain the claimed equality. �
Lemma 1 (Reconstruction From Edge DoFs Restricted to a

Polygonal Face): Let u be a constant vector field, and let f
be a polygon in some plane L of R

3 (Fig. 2). Let us denote

Fig. 2. Polygon and the relevant geometric elements involved in the proof
of Lemma 1.

with n f the unit normal vector orthogonal to f . Choose an
arbitrary point p ∈ R

3. The following equality holds:

u × n f = 1

| f |
∑
e∈∂ f

(u · e) (be − p). (6)

Proof: Let f e := e×n f be the vector orthogonal to edge
e in L. Note that vector u × n f belongs to L. Thus, if we
apply the argument used in the proof of Theorem 1 to the
vector field u × n f restricted to f , then we obtain

u × n f = 1

| f |
∑
e∈∂ f

((u × n f ) · f e) (be − p). (7)

Based on the definition of f e, it follows that

(u × n f ) · f e = (u × n f ) · (e × n f ) (8)

= (n f × (u × n f )) · e = u · e (9)

and hence, substituting in (7), we obtain the claimed
equality. �

Theorem 2 (Reconstruction From Edge DoFs): Let u be a
constant vector field defined on a cell c. Choose an arbitrary
dual node ñc ∈ R

3 and define f̃ e as at the end of Section II.
The following equality holds:

u = 1

|c|
∑
e∈∂c

(u · e) f̃ e. (10)

Proof: Let w ∈ R
3. Thanks to (2), we have

2|c| u · w = 2
∫

c
u · w dV

=
∫

c
u · ∇(

w × (x − ñc)
)

dV

=
∫
∂c
(u × n) · (

w × (x − ñc)
)

d S

=
∑
f ∈∂c

∫
f
(u × n f ) ·

(
w × (x − ñc)

)
d S

=
∑
f ∈∂c

| f | (u × n f ) · (w × ẽ f ). (11)

Apply Lemma 1 to every face f in the last term of the
above expression, choosing the same node ñc as the arbitrary
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point involved in the formula. We obtain

2|c| u · w =
∑
f ∈∂c

( ∑
e∈∂ f

(u · e) (be − ñc)
)

· (w × ẽ f )

=
∑
f ∈∂c

(
ẽ f ×

( ∑
e∈∂ f

(u · e) (be − ñc)
))

· w

=
∑
e∈∂c

(u · e)((ẽ fi ×(be−ñc)− ẽ f j × (be−ñc)) · w)
(12)

where fi , f j are the unique faces of c such that e = fi ∩ f j , for
suitable indices i = i(e) and j = j (e), and oriented so that
they induce opposite orientations on edge e. Now, dividing
by two both members of the last term in (12) and using the
definition of f̃ e, it follows that

|c| u · w =
∑
e∈∂c

(u · e) ( f̃ e · w). (13)

Since w is arbitrary, we obtain the claimed equality. �
Theorem 3 (Magic Formulas): Let c be a polyhedral cell.

The following tensor identities hold:∑
e∈∂c

f̃ e ⊗ e = |c| I3 (14)

∑
f ∈∂c

ẽ f ⊗ f = |c| I3 (15)

where I3 denotes the identity matrix of order 3.
Proof: It is a direct consequence of

Theorems 1 and 2. �

IV. CONSTRUCTION OF A CONSISTENT MASS MATRIX

In this section, we show how the formulas (14) and (15)
can be used to construct positive-definite mass matrices M

E

and M
F for edge and face DoFs, respectively.

Without loss of generality, we assume that the mesh is
composed of a single cell c, see Fig. 1. In the general case
of a mesh made of more than one cell, the corresponding
global mass matrices are obtained by assembling, cell by
cell, the contributions from the local matrices M

E
c and M

F
c

computed for every cell c.
Let us consider a pair of element-wise constant vector fields

E and D in a cell c, related by a constitutive relation

D = ε E (16)

where ε is a reluctivity matrix of order 3 that it is assumed
to be symmetric and positive-definite. Then, for the electric
voltage along edge e, we write

Ue = e · E (17)

while the electric flux on f̃e is

ψ f̃e
= f̃ e · D. (18)

We say that M
E
c is a consistent mass matrix if

ψ f̃e
= M

E
c Ue (19)

holds exactly for any pair of constant vector fields E, D
satisfying (16).

Similarly, for magnetic phenomena, we consider a pair of
element-wise constant vector fields B and H in a cell c, related
by a constitutive relation

H = ν B (20)

where ν is a permittivity matrix of order 3 that it is assumed
to be symmetric and positive-definite. Then, for the induction
flux on f , we write

φ f = f · B (21)

while the magnetic voltage along ẽ f is

Fẽ f = ẽ f · H. (22)

We say that M
F
c is a consistent mass matrix if

ψẽ f = M
F
c φ f (23)

holds exactly for any pair of constant vector fields B, H
satisfying (20).

An efficient recipe to construct consistent and symmetric
mass matrices M

E
c ,M

F
c combines the geometric identities (14)

and (15) with the uniformity of the vector fields in c.
We right multiply (14) by E obtaining

E = 1

|c|
∑
e∈∂c

f̃ e Ue (24)

where we have used (17) for Ue; it allows to reconstruct
exactly a constant vector field in c, starting from DoFs attached
to edges of c. Next, we left multiply (24) by ε and from (16)
we write

D = 1

|c|
∑
e∈∂c

ε f̃ e Ue. (25)

Finally, using (18), the electric flux becomes

ψ f̃e	 = 1

|c|
∑
e∈∂c

f̃ e	 · ε f̃ e Ue (26)

and the (e	, e) entry of a consistent mass matrix M
E
c is given by

1

|c| f̃ e	 · ε f̃ e (27)

with e, e	 ∈ ∂c.
Similarly, for magnetic phenomena, we right multiply (15)

by B obtaining

B = 1

|c|
∑
f ∈∂c

ẽ f φ f (28)

where we have used (21) for φ f ; it allows to reconstruct
exactly a constant vector field in c, starting from DoFs attached
to faces of c. Next, we left multiply (28) by ν and from (20)
we write

H = 1

|c|
∑
f ∈∂c

ν ẽ f φ f . (29)

Finally, using (22), the magnetic voltage becomes

Fẽ f 	 = 1

|c|
∑
f ∈∂c

ẽ f 	 · ν ẽ f φ f (30)
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and the ( f 	, f ) entry of consistent mass matrix M
F
c is given by

1

|c| ẽ f 	 · ν ẽ f (31)

with f, f 	 ∈ ∂c.
The matrices M

E
c and M

F
c constructed in this way are

symmetric, consistent, and positive-semidefinite. To construct
positive-definite mass matrices, a possible solution, developed
in Theorem 4, is to add to the matrices M

E
c and M

F
c a stabi-

lization matrix, which is symmetric and positive-semidefinite.
The stabilization matrix coincides with the one proposed in
the mimetic literature [7].

Theorem 4 (Positive-Definite Local Mass Matrices): Let m
be the number of either faces or edges of c. Let α =
(α1, . . . , αm−3) ∈ (R+)m−3 be any (m − 3)-upla of positive
real numbers and let Dα be the diagonal matrix whose diagonal
entries are α1, . . . , αm−3. Let Ec and Fc be two matrices whose
rows collect vectors e and f of edges e ∈ ∂c and faces
f ∈ ∂c, respectively. Let (wE

1 , . . . ,w
E
m−3) be an orthonormal

basis of the orthogonal complement of the image space of Ec.
Similarly, let (wF

1 , . . . ,w
F
m−3) be an orthonormal basis of the

orthogonal complement of the image space of Fc.
Then, the following matrices:

M
E
c +

m−3∑
i=1

αiw
E
i

(
wE

i

)T
(32)

M
F
c +

m−3∑
i=1

αiw
F
i

(
wF

i

)T
(33)

are symmetric, consistent, and positive-definite.
Proof: It is sufficient to show that (32) is positive-definite.

Let z ∈ R
m be such that zT

M
E
c z = 0 and

∑m−3
i=1 αi (zT wE

i )
2 =

0. Since each αi is positive, the latter condition implies that
z is in the image space of Ec. As a consequence, z = Ec y
for some y ∈ R

3. It follows that zT
M

E
c z = yT

E
T
c M

E
c Ec y =

|c| yT y = 0, where we have used (14). Thus, z = Ec y = 0,
as desired. �

V. CONSEQUENCES OF NOVEL PROOFS

A first consequence of the novel proofs of the magic for-
mulas, which has been verified by solving patch test problems
(i.e. static electromagnetic problems for which the exact
solution is piecewise uniform), is that the mass matrices con-
structed according to Theorem 4 work for very general poly-
hedral cells. This is a consequence of Theorem 3, which holds
for every polyhedral cell c since it is based on Stokes formulas
(1) and (2). As an instance, Fig. 3 provides examples of exotic
polyhedral cells: concave, not star-shaped, even non-manifold,
and non-simply-connected. This generalizes the results
in [1], [2], [4] where it is required that polyhedral cells have
to be star-shaped.

Another contribution is that each dual node ñc can be placed
arbitrarily, even outside the cell c. This observation extends
the standard geometric construction of the barycentric dual
grid, where a dual node ñc is assumed to be fixed and equal

Fig. 3. (a) Examples of concave, non-manifold and non-simply-connected
mesh elements. (b) Polyhedral grid obtained with adaptive coarsening [9]
where exotic elements are constructed by gluing tetrahedra of a background
simplicial mesh.

to the barycenter bc of c. We point out that this does not affect
the role of geometric elements of the barycentric dual grid in
the expressions of balance laws of physical theories. This is
because, although dual edges and dual faces are stretched and
deformed by using an arbitrary dual node ñc, they still provide
a valid dual grid structure.

VI. CONCLUSION

In the present contribution, novel proofs of the magic
formulas are given. These are based on Stokes formulas and
show that mass matrices constructed starting from them work
for very general polyhedral elements and arbitrarily positioned
dual nodes. Future research may investigate how to choose
dual nodes in order to optimize mass matrices, as measured
by suitable objective functions. In this case, optimal dual nodes
may lie outside elements and our contribution shows that these
still provide a feasible dual grid structure.
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